FACTSET) SEE THE ADVANTAGE

FactSet DataFeed API

C++ Programmer’s Manual and Reference
Version 4.0

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Table of Contents

TaDLE OF CONTENTS......oeieieeeteeeeteeectete ettt ettt e s et s se st s se st et se st st se st st se st s st se st s st sestentesestentesententsenten 2
[o 5
FactSet CONSULLING SEIVICEScoviviiiieiiieiiiititctcecttcntst ettt sttt sa s st sat st st st e b e sasssasase st sntssbesnssenasnaane 5
Document Organization and AUIENCEcoc oottt ettt ettt s st sesae s st st st st e e e sassnaasane 6
DOCUMENT CONVENEION ..ottt sttt ettt s e s st st et st st e s e s ae e e st st sabestesmesasnasnaane 6
L= L L1 11T 1R 6
ACKNOWLEAZEMENTS.....ceiiiiiiiitiititetcccctnt ettt st et s st s st st s bbb et e e s st st st s b s b e saeasesatssassbesnssnasnaane 6
L@ g =1 (=] A 1 (0T [Tt oo SRR 7
1.1 The FactSet DAtaFeed APl ...ttt st sae s sss st st st s b e asssesses e sat st ssassbenasnsanass 7
1.3 HiGh LEVEL OVEIVIEWcneiniiieieeeeeecete ettt et et st e e ae s e st s st et st et e sas s e st st s st st e b e aeeae st st satentennessesnaasntsn 9
1.4 API Core Functionality and BeNeFits ...ttt sttt sttt aeenesaaane 10
1.4.1 Support for Multiple DeelopmMENT PIAtIOIMSoiiiiiiiiie e e s e b e e e e e eneees 10
1.4.2 TCP/IP COMMUNICALIOINS.eittiiieieeeeeeei e s ittt e e e e e e e e e e e e et e et e maee e e e e e e s sasas e s eaeebesbeees s s nnnssssbesbesseeeeeenaanssssnnseenneees 11
1.4.3 SECUNLY PrOIOCOIS. ... ittt ettt ettt e e oottt e e e okt b e et b e et e e e s aab b e et e e e e e aab b ee et bb e e e e e e abbbneeeeeeannes 11
1.4.4 SIMPIIfIE0 DAL ACCESS ...eiiiiiuttettetet it ireatte et e e e tb e et e e s s e b eeaaste et e e e s s e bt et e e e e oaa s eaea st b et e e e e e nbb b et e e e e asbenennsbaeeeeseannnnees 11
1.4.5 REQUEST CONSISIEINCY. ... tettieeiiutititee e s iiee e s ettt e e e e sttt et e e e s amee e s s bbbt e e e e e sk bbe e e e e s smee e e aab b e et e e e e e bbbt e e e e s ammee s e annbbeeeeeennbnneas 11
1.4.6 SUDSCIIPLION MANAGEIMENL......iiiitiiiiee ettt e ettt e ettt e e e et e e ettt e e e e okt be et e e e e st e e asbbe e e e e e s aabbbeeeeeesansbenessbbeeeeeesane 12
I - VX 1T SRS 12
SR WeToToT[a o Ir=TaTo M@)ol iTe U1 =Y i o] o 1Y F= T F= Vo [T o 1= o A0S 12
I I T r= = o [T T ST U o o o 1 4 12
O =T o) (=T g2 = W1 o T g o Y o] o] o= i o o L= USSP 13
2.1 TOOLKIt OraNIZationcc.coeiiiiiieiiiiiiieiitetctctcctntste sttt et sat s se s st st st e b e ssssasnts st sntssbesnesnsanasnsane 13
2.1.1 Supported Compilers, Operating Systems, and ArChItECIULES........ccoiii i e e e e e 13
A N | o = 1 YA N\ = [T @0 NV Z=T o 1T = 14
2.2 COMPILING APPLICATIONS....cuieiiiiiiiciitttctcccttr ettt sttt st sab b sesaa st sst st snesasanasnnane 15
P R\ o3 (01T A e = 11 (0] 0 1 PP RPN PP 15
A B 8 o F=Y {0 1 1 PSP T PP RPRTPPPPPRPPIN 16
B2 I U T T o T2 o] o1 1 T0F= 11] o 1= USRS 16
2.3. 1 WiINOOWS SYSEEIMIS. ... i e iiieiiieeeieiii e eetet s s e e e e eeete et e teeaeaeaete et aesteta s s eeeamaasasssseaeeeeeeeesssssssnnmmnssesennnnnseaeeeaaeaeees 16
G I U N D QY1 (=T 1 41 PSP PPPPPPPOPPPP 17
24 VEISIONING ...eeiteeeeeeceieteteteeeeteeee e et sste st st e sse et e e st e st et st e aesassasaee st s st sseansesassesstestestsssesseasestententestestensesasessensans 17
A Y L= =T o I O] o o | PP O PPRPRTPPPPPRPPIN 17
Chapter 3 Programming WIth the ARLL.......ccoo e eeee e e e e e e et e s e e e eeee s e e s e e e eeeeeeeesestnssnmmneesssnnnnnnes 18
3.1 Program Setup and INIALZAtIONcocoiiiiiiiecttrtrrcc ettt ettt n 18
O I A = g To F= T o I 0] 01V =T 1o PSP RO O PP RP P PPPRI 18
TN A O [0 1YW [(I AN o [0 11T o £ U 18
3.1.3 Namespaces and INCIUGEEES............oooiiiiiii ettt ettt e e e st e et b ee e e e e e sttt e e e e e e s rmeeesannes 18
TN L= D L I3 L - TR 18
3.1.5 A COMPIELIE EXAIMPIE.eeiieiiiiiieeee ettt rmee ettt e e 4o e bbbt e e s smme e o ek bbb et e e e e aneb bttt e e eamme e s e anebb e e e e e e e nnnees 19
3.2 CONNECLING t0 @ DAtA SOUICE.....cueieiieeeeeieieieteeeeeeee et et et e eeeae e et st et et e aeesesase e st este st esasseasasasasestessessasesasenesn 20
I R o] o =Tt i o] IS (o ST OO PP PP 21
3.2.2 Synchronous ConNect SEQUENCE DIAGIAML.iiuuuiiiietieee sttt e e s ettt e e e samme s s as b e e e e e s annbbe e e e s samme e e eanebbeeeeeeannnees 24
3.2.3 SYNChronOUS CONNECE EXAIMPIE.ccoiiiiiiiiie it ites ettt e ettt e reee ettt e e e e st bttt e e e s rmnee s sabbeeeeeeesasbbeeeeeessmnaesannes 25
3.2.4 Asynchronous CoNNECt SEQUENCE DIAGIAIIL........coiiuuiiiieeeaee e e e ettieeee e s sttt e e eeatee e s sbbeeeeaessatbeeeesaeaeeeesanbeeeeeesans 26
3.2.5 ASYNIChronNOUS CONNECT EXAIMPIE........eeiiiiiiiiii ettt ettt e e e s sttt seee e e e e s nbb e e e e e e s annbbeeeaeeneeees 27
3.3 REQUESTS @NU CANCELSceeeienirieeeeeeteeceeeteteteseeeneeeesese et et saeesesaeesessessteseessssssnsestsssestessessesesnsesesnsestessesssssesssesess 28
IR @ o =T o1 o Vo IR 1 oIS 1 (=T T o PSPPI 28
I 2 @1 (o 1] [0 I TS (== 4 o F PP PPP TP 28
3.3.3 Tag OWNEISHIP AN LITEEEuuiiiiieiiiiiii et me e e e e e e e s e b b e e e e e s nnnes 29
3.3.4 DYNAIMIC REQUESL.....ceeiieiieii ettt oo oo oo oot e b e e e e s o e s o a b b ab b bt bb e st e ea e nsaebbebbesbeeeeeeeeeean 29
R TS - 1 1ol m L= U1 S PP PU PP PP T 30
3.3.6 BUIK SUDSCIIPIIONS ...ttt eeee ettt et e e ettt ettt et ettt e e e e a2 e e e e s eaameeeeeeeeeaaaaaaaaeesasaasanmmeaeaaaaaaaaaesaaaaanannns 30
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

3.3.7 CANCEIING REQUESES.......eeiiiiiiiiiiit ettt ettt e eamt e e s e e bbbttt e e o s e bbb et s2amt e e o e a bbb et e e e e e ab bbbt e eemt e e e e e nbbreeeeeeannnres 31
3.4 ProCeSSING EVENTS ..ottt sttt e s e st st s s s st e e e st et e b s ae et et et st e e e neae st s 32
o A\ [g g F= U B] o F= o] 1] o SO P PP PPTRPPPPP 32
K o b T [o T o To [= £ (o] £ TP PP P PP PP PPPPPPPPPIN 32
3.4.3 Integrating with a Seldaop Or XtWINAOWS LOOP........iuuiiiiiieiiiiiii ettt eeee et e s eeeeneeeee s 33
3.4.4 Integrating with a Windows Loop USiNg WSAASYNCSEIECT..........cciiiiiiiiiieeeiiee ettt 34
3.4.5 Integrating with Windows Using create_mswin_dispatch_WiNdOMW().........cooourriiiiierceiiiiieee e 34
3.5 Processing the IMESSAEES........cocueirreuieieieinteteeeeee et st et s e ae et st st et saeese s e se st st e st e aesaesat e sat et et eseenasasanesn 35
B.5. L FID VAIUEB PaIIS.... .ottt eee ettt eeaaaaa bttt ettt e e e e e e e e e eas et e e eeeeeeaaaaeaeeeeasesaameeeeaaeaeeeeesaesaaaannnrnns 35
T 1T o N [0 [T 11T 3 TSR UPURPPPPPPPPRN 35
B IR TR 1Y (TS ST= T L= TP PRRRTPPPTR 35
IR ST =Yoo] (oL PSPPI 35
3.5.5 Processing a MeSSage EXAMPIE.coooi i oottt eee e e e s e e e e et aareereeeannnrrrrne 36
3.0 TREEAAING ..ttt sttt st st a et st st st s s bt s st st st st e b e aesasat st snbsssessesnsaness 37
3.6.1 THIrEAEBATE ClASSES.....ceiiiiiiiiieiie it ee ettt e et e e e s ettt e s s s e e e e e et e e s e s e ettt e e s s e e m s nn e et e e s nnnnreeee s 37
3.6.2 THre@eliNSATE ClIASSES.uuiiiiiiiitiiiie ettt e ettt eerame e e s et e e e e s e n e et e e emamt e e e s aan e e e e e e e s s rne e e s emamee e e s snnrneeeennans 37
3.6.3 ClaSBNIEaAASATE.ccoiiiriiiie e e e e e e e e e e e e r e et e e e e e e e e s 37
ISR B == 0] o] Y2] o] =T £ 37
3.6.5 Threading Issues Using @ CallDBITR/EN APL...........uuiiiiiiiiiiiiisceceeerr e e e e eeesre e e e e et e e e e e e e e e e st e s smmmreeaaaaaaeaens 37
3.6.6 AVOIAING DEAAIOCK.eeeiiiiiiiiiet ettt ettt e rmt e e e e bbbt e e e e e ab bt e e eemt e e e e e nbb b e e e e e e annnee 38
Chapter 4 APl Class RETEIENCEcccoi ittt e e s srmne e s sirreee e e e s snnneeeessmmneesssnnnneeeeessnnnnnees A0
L1 APL CONSTANTS....coueiieiiiiieieetitecsetsecs ettt st s et sae e st st s et s st s ae s b s b e st et s st s ats et ssasasbaestesstasstssssssaesssesssesssens 40
I = o T oL [PO PUUPRPRRRRRY” 10
o A =Y o Lo =T =T SR SPPPRPPRN 40
L 1T L1123 £ 41
o o I = =0 [0 =SS A = TR 42
4.3 FID Fields and MESSAZEScocueerreirueeiniiiiietneencncetststesessessesssestsstsstesssssssessestsstsssessessessesssssssntestessessessesssssess 44
o Tt R 1B T o KT PP PPPPPPP PP 44
B |V 1TSSt T =3 PSPPI TSPPIN 46
4.3.3 RT_MESSAGE ClaSS...ccieiiitiiiiieeiiitieeette et e ettt e et e e ettt e e e s abb et ee e e s s sabbeeesbbseeeeesssnbnneeeesssnsbennssssseeeesssnnnneeeeessns T
BBy RECOTAS..c..ecuieienirieteeeeeeeceteseste e eeeseeee e et st et sasesesaee e s st s st et ssnsesesaeestsatestestansssseasesesntestestessesesasastentestessessessesssenesn 51
I I =T oo} o [= T PP 52
4.5 FIeld TranSLation ..ottt sttt ettt et s e e st st s st st s s e se e sat et s b e ssnesnsaness 54
T N o I 1= [11T o T =TSO 55
4.6 RT_CONSUIMIEE ..uciurirnineinieinntesstesstcsstesstssacssesssesssesssessstsssesssssssssstssstsssessstsssesssssssssssssstesstssstsssssssessssssssssessstsssssssssssssnsess 57
T o I o F=1 U 1= G = RPN 58
4.7 The FDF Class INTEITACEoceueeerreererceerereeeeresetseeasesesasessesaseessesasssesesasssssesasssssesasssssesasssssesasssssesasssssesasssesesasses 67
N R B e O - L PP PPPPUPP PP 68
4.7.2 Logging Within and OULSIAE the ARL...........oue e s e e e e et e e e eeae e e e e e e ae e et e e e eeean 69
B Rl @daT a1 iTe [W = U To] gL F=V g = To =T o 0= o | 71
Chapter 5 PerMiSSION SEIVICE.ccciiiiieiiiieie e s s e s e e e e e ee et ttreeeeeae ettt aesteta s aseamaasasssssaeaeesesessssssnsssnmnsesssssnnnnnsesseeeeeeeees
5.1 REQUIFEIMENTSuueeuerreeeeereeeernersaeesaessaneseeeseassesssesssesssassesssessssssssssasssssssssssssssesssesssesssssssassessssssssssssssasssasssasssassssessassns 72
5.1.1 Authenticating with @ FactSet WOrKSIAtON.ccoiiiiiieeeee e rrre e e e e e 73
5.1.2 Authenticating With FACISEt LAUNCN..........oooi ettt e e e bbb b e s s e e e e e e eeeanans 73
5.2 WOTKFLOW.....ceeeeetreeecteiecteeeceteteeteete e s enteseseseesessesteseeseseesesseseesesesseneesesssstesessestesesssssesesssseesessssesessseesesssseesesasses 73
5.3 AUAIT PrOCESS ...ttt et see st st s st et st s s e e st e st st st s ae s ae e s st et st sebesbesasesasnssntsntestensesasnesnsans 74
5.4 SErvice and Data MOTELco.eeeeeeieeieieieieeeeeeteeeeeeee et etesaeeseesesseeseesesseesesasesesssssessssssessesaseseessesssssestessesasesssnsans 75
5.4.1. Complete Permission SErviCe EXAMPIE.coui ittt ettt e et e e e e e bt e e e e e e nnaeas 75
Chapter 6 OptioNS GreeKS CalCUIALION.ciiiiiiiie ettt rtee ettt e sttt e e s smee s s e bttt e e s abbbeee e e s smmne s s annnnneeeens 79
6.1 REQUIFEIMENTSceiiiiiiieieiiretrtrrteseeeteesteeteetseatesaesseessses st seassasssassssssssasssasstesstssstsssesssesssesssesasssasssassssesssesstesstassssnns 79
6.2 New Implied Volatility and Greek FIEldS ..ottt et seee st s aesessesasss 79
B.2.1 SAMIPIE DALA.oii ittt ettt eeaeaaab b e ettt ettt ettt e e e e e eaat e ettt ettt e e e e e e e e e e e et e e aamteeeeeeeaeeeeeaeeaa e e nanaaeaeas 80
6.3 RiSK Free INtEreSt RATES......c..ooiieieiieitetececce ettt sttt st st s e as s se s st st st s saesannesnnane 80
6.4 Setting up Greek CAlCULAIONSc..o ittt ettt st st s e se e st st st e b e sasnesnnane 80
6.4.1 ProcessingMesSage EXAMPLEo oo r e e bbb eeeee e e e aaaennreee 81
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

O g F=T o] (T A =YY =T DT 7= NSO PP P PPPP SRR 82
T.1 REQUIFEIMENTES ...ttt ettt ettt e et s st e st st e e s e e et e st et st s ae s ae e e s st et et sebe b e asesaeatstsstentansesasnsnsans 82
7.3 SEttiNG UP LEVEL 2 DAt ...ttt ettt sttt a e sttt s e st b e st st st et e mesanenesnnane 82
T2 LEVEL 2 FIELAS ..ttt ettt sttt s st s st st st st b e s s e st st st st et e s s b e ne e sat st esbesasenasnaane 82
7.4 Processing LEVEL 2 DAta......cc.couieiriiiuiiiiiiiititcicncentntntet sttt sssesesasssessssstssssssessesssssssssstssssssessesssnsssans 83
7.4.1 Processing a MeSSage EXAMPIE.oooii i it eee e e e e e e s e e e ntaeatreeeeeeananrrrrne 83
(O g = 101 (= S U1) 11O 85
20 I T L 10 RS OR 85
APPENAIX Al EITON VAIUBS ...ttt ettt ettt eeat e oo 4ok b ettt e o4 aa s bbb et ee et e e 44 aa kb b et e e e 4o ae b b et ee et e e e e e annbbe e e e e e e nnbneeenns 86
APPENAIX B: RELIUIM VAIUES........eiiiiiiiiiiieiie e ieeei e e e e e e e e e eeeetestae e eeeeeeetaaaaeeeessaaateeteetaaaaeaeaaessessaasanmnraeeaeeeesessananannsnnnnnns 87
APPENAIX C: CONIOI IMESSAGES. ...ceieee e i i et i i e e eeee e e et e e et et e ettt eeesssas s s aseeetaeteeaee s e s saanssseteesseseeeeeeeeeeeeeeennsesneeeeeanaaaaeaeenes 39
Appendix D: ConnectioBt r i N g s a0 . U R L. S e ————— 90
PV o] o 1T o [Deal S @do)) 1o [] =11 0T T = (] 01T 1= SR PESURRRRR 91
PV o] oL=T gl [hq mi B o Tot U o L=) AV A= T 6] o] o T o 1] (o] oY 93
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Notice

This manual containsonfidential information of FactSResearch Systems Inc. or its affiliates ("FactSet"). All proprietary rights,
including intellectual property rights, in the Licensed Materials will remain property of FactSet or its Suppliers,asdeapfiie
information in this document is subject to change without notice and does not represent a commitment on the part of FactSet.

FactSet assumes no responsibility for any errors that may appear in this document.

FactSet Consulting Services

North America FactSeResearch Systems Inc.

United States and Canada

Europet FactSet Limited

+1.877.FACTSET

United Kingdom
Belgium

France

Germany

Ireland, Republic of
Italy

Netherlands
Norway

Spain

Sweden

Switzerland

European and Middle Eastern countries not listed above

Pacific RimFactSet Pacific Inc.

Japan Consulting Services (Japan and Korea)
Hong Kong Consulting (Hong Kong, China, India, Malaysia, Singapore,

Sri Lanka, and Taiwan)

Sydney Consulting Services

Email Support

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

0800.169.5954

800.94108

0800.484.414

0800.200.0320

1800.409.937

800.510.858

0800.228.8024

800.30365

900.811.921

0200.110.263

0800.881.720

+44.(0)20.7374.4445

0120.779.465 (Within Japan)
+81.3.6268.5200 (Outside Japan)

+852.2251.1833

1800.33.28.33 (Within Australia)
+61.2.8223.0400 (Outside Australia)

support@factset.com

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Document Organization and Audience

This document is intended for application programmers that are familiar with C/C++ aneCDigjeietd Systems. Its purpose is to
fully describe the functionalityontained within the FactSet DataFeed API. This document is intended to be redotoover, and
then act as a reference guide to application developers using the FactSet DataFeed API.

Chapter 1 - Introduces FactSet DataFeed APl and defines key concepts and terminology.
Chapter 2 - Explains how to build and link applications using this API.

Chapter 3 - Describes the programming concepts at various stages of an application.
Chapter 4 - Lists the complete Class Reference.

Chapter 5 Describes th@ermissioning Service

Chapter 6 Describes the Options Greeks Calculations

=A =4 =4 =4 =4 -4 -4

Appendix - Extends the class reference by provided additional details.

Document Convention
This document uses the following conventions:

Code snippets use a courier 10 font - FDF: :connect()

)l

1 Methods, when first introduced, appear in bold - FDF::dispatch()

1 The directory delimiter character follows the UNIX convention - forward slash (/)
l

Items of importance will be in boxes of following type:

| x Important notations will be in this type of box.

Trademarks

FactSet is a registered trademark of FactSet Research Systems, Inc.

Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds

Cisco is a trademark of Cisco Systems, Inc

UNIX ® is a registered trademark of The Open Group.

Intel is a registered trademark of Intel Corporation

XWindows is a registered trademark of Massachusetts Institute of Technology

All other brand or product names may be trademarks of their respective companies.

Acknowledgements

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

http://www.openssl.org/

FACTSET) SEE THE ADVANTAGE

Chapter 1 Introduction
1.1 The FactSet DataFeed API

The FactSet DataFeed API is a npldtiform C++ objeadriented framework which is used to communicate with a FactSet data
source The API assists developers with all aspects of communication, request/message processing, and subscription managemer
Theclasses simplify data access by providing asynchronous messages to applietitied callbacks.

Applications have two choices when connecting to a data source: a FactSet Data Server or the local FactSet workstaigen The
data source will authentite as well as permission the various data sets available. Applications that attempt to connect without
authorization will receive a connection error. Connected applications that request data they are not entitled twileezigare an
error messagéom the data source.

The first data source optiontise FactSet Data Server, which is a banllsystemthat is hosted by FactSet. Connections to a FactSet
Data Server occur overghnternet or a WAN via TCP/Mpplications must be given a usernamasgword, and the address
information (i.e., IP and port number) for the FactSet Data Server.

Sgd rdbnmc ¢ s rntgbd noshnm hr °~ knb >k E bsRds wngwihr s st
the permissions tiedtothatr dq-r rdgh> k mtl adg- Bnmmdbshnmr sn °~ knb k E
COM and TCP/IP. Applications must be given a username and serial number. This configuration is designed for the consuming
application to receive datagufor local use on the workstation, not for sharing datarty other user

A
FactSet Data Center
ICP and
TCP/IP TCPIP
\4
API API
Application Application

User’s machine

Figure 1: Two API clients connected to the two different FactSet data sources

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

1.2 Terminology

The following terminology is used throughout this documentation:

Terminology Meaning

API Application Programming Interface - a set of defined interfaces that applications use to
extract information from the FactSet Data Server.

SDK Software Development Kit - a collection of libraries, include files, documentation, and
sample codes that make up this toolkit.

XML eXtensible Markup Language - a defined standard for exchanging information. The
information contains markup tags used to describe the data values.

TCP/IP Transport Control Protocol over Internet Protocol - the protocol that this API uses to
communicate to the FactSet Data Server.

FactSet Data A server which provides permissioned access to FactSet data.

Server

FDS Multiple meanings. FDS is the ticker symbol for FactSet Research Systems Inc. It is also
the C++ namespace that this API resides. Finally, it may stand for the FactSet Data
Server. The meaning is defined by its context.

Service A data source or supplier identified by a string name.

FDS1 FactSet’s Streaming Production Data Service. . For a complete description of the data
fields, types, and possible values see the FactSet Data Service Specification

FDS_FUND FactSet’s Fundamental Data Service. Used for End of Day data.

FDS_C FactSet’s Canned Data Service. Recorded data is replayed, used for testing.

FDS_PERM FactSet’s Permission Service. Used by third party integrators to enforce end-users
Exchange permissions using the Workstation Entitled API setup.

Consumer Any application that uses this API.

Stream A virtual tunnel of messages for a given request.

Tag An integer resource used to identify a particular stream.

FDF A singleton class used to communicate with the FactSet Data Server. It is the
abbreviation for FactSet DataFeed.

Callback An application-defined function that is called by the API.

Closure A user-defined void * pointer that is passed back to an application-defined callback.

FID Field Identifier - an integer identifier that describes the encoding and business meaning of
a field value.

Opaque Data Data without a defined interpretation, which is simply a pointer and size to the data.

Field/Value Pairs A self-describing message format used in APl messages. Each pair contains a FID and
some opaque data. The FID defines the type and meaning of the data.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

1.3 High Level Overview

The following diagram shows the logical connections to the FactSet Data Server:

Messages

Figure 2: High Level Overview

Application
Threads

Application

AP|
Threads

Requests

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE
Applications will use the interface defined by the API to do the following:

9 Connect to the Data Server: This will initiate the TCP connection and start an internal communication thread within the API.
Request Data: Requests will be posted on a queue to be sent out via the communication thread.

1 Receive Messages via Callbacks: Callback events will be posted to a message queue by the communication thread. The
application will call an API method to dispatch any available callbacks. All callbacks will be executed in the context of an
application thread.

1 Disconnect from the Data Server: The application may disconnect from the Data Server at any time. This will destroy the
communication thread as well.

Information on API Threads

The API threads will NEVER execute application routines. It is up to the application to give control back to the spRtal) din
orderto receive messages via callbacks.

The API will create one thread per RT_Consumer object. This thread serves as a communication thread and is resgbosible for a
the TCP/IP communication with the data server. The thread is created when the appiarataxts to the FactSet Data Server, and
destroyed when the application calls disconnect().

In addition, the API starts a single global maintenance thread. This thread will be created only if the applicatior.aggmthe
interfaces within the API. e this thread is created, it can only be destroyed on program termination.

1.4 API Core Functionality and Benefits
The API provides the following services to applications:

Support for multiple development platforms
Abstract the underlying TCP/IP connection
TCP connection failure handling

Simplified data access

l
l
l
l
1 A consistent interface for opening and closing streams
1 Subscription Management

1 Caching

1 Logging and Configuration Management

il

Class-thread-safe, thread-aware
1.4.1 Support for Multiple Development Platforms

Multiple development environments are supported by the API. This toolkit is available on the following systems: Linux, Solaris, and
Microsoft Windows. The specific platforms may vary based on the type of operating system, but these can be extended if needed. For a
complete list of supported platforms, see section 2.1.1. Supported Compilers, Operating Systems, and Architectures

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

10

FACTSET) SEE THE ADVANTAGE

1.4.2 TCP/IP Communications

TheAPI handles all aspects of the TCEBdifhectiorto the Data Server includingoblems relatedo asynchronous communication,
byte-ordering, and thduffering needed when using streamented protocols.

The API will detect TGRetworkfailures, andwill notify all open streams of the condition (i.e.cleatream will receive a stale
message)Applications only need to monitor thedividual streams, ad not the connection as a whdle.

The API will continuouslsetry the connectiorto the Data Server ithe event of a TCP disconnect. Upon &assful econnect, the
currentopen steams will also be restablished. &resh dta will be sent and each open stream will transition from a stale to-a non
stale state.
Required Ports:

1 tcp/6681 — Connection to Exchange DataFeed Server

1 tcp/443 —Web-based authentication

api(-stage).df.factset.com and canned-stage.df.factset.com: tcp/6681 need to be opened outbound-initiated for subnets:

1 192.234.235.0 (255.255.255.0)
1 64.209.89.0 (255.255.255.0)

1.4.3 Security Protocols

Clients should not hardcode dependencies on any specific security protocol asis-aot8@uously reviewing security policies and
reserves the right to disable support for older security protocols with short Acfibe current supported protocols are TLSv1.1 and
TLSv1.2 but at a future date, these may be replaced with future v&r€iients should make sure that their software can handle
ever changing Security Protocols.

1.4.4 Simplified Data Access

The API delivers data using field/value pairs. The RT_Message class allows applications to easily extract the Tatadiatds.
supports both random and sequential access. Furthermore, the application can coerce the datastdliussing

1.4.5 Request Consistency

The API provides ansisten interface foropening and closing streamall requests will receive an integer identifier (tag) to a
virtual stream. This applies to both static (i.e., snapshot) and dynamic requests. In addition, messages on any mivéh baea
associated by the stream identifier. To close a streamapiblecation needs to pass the stream id back to the API.

1 The API does inform the application about the connection status as a whole, and the application can use this information in any way it sees fit.
2 As of 29-Jul-2017 support for security protocol TLSv1.0 is disabled and requests using this TLS version will fail.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

11

FACTSET) SEE THE ADVANTAGE

1.4.6 Subscription Management

The API allowapplications to request duplicate data items. Eterh ivill create its own stream. Although the virtual streams are
independent they will receive identical messages. However, there will be only stimieto the data server This optimization
saves both CPtgsourcesand network bandwidth.

1.4.7 Caching

The initial message on the stream will contain all the fields for a message. Subsequent messages may only contaimethe fields
have changed. This behavior may require an application to keep state of all the fields for a given a strearberkedit thiethe
application, the API will perform this caching. A cached data record is associated with every stream and is availabédldaciag
processing. An application may use this record in any matter it sees fit.

1.4.8 Logging and Configuration Management

To aid developers with troubleshooting and debugging, the API supports logging of error and informational messagesl to standar
error (cerr). Applications can request that an actual log file be opened and messages be directed to thaldifion mpplications
using the API are allowed to log events to the same file.

@ookhb™ shnmr sxokld™ k bxd gmd chan s 0 o&rhrbée s hnm r dss hmf r - Eng dw
be stored in some configuration file gsem registry. The API includes functionality to assist applications in querying configuration
files and system registries.

1.4.9Threading Support

This API is both threadware and in some cases thresafe. Not all objects are threaafe, but the enté API is threaghware. The
definitions of threaghware and threa¢afe are as follows:

Thread-aware: The code in question does not use static or global variables without the use of mutexes. All IN/OUT parameters al
passed via the stack, and methodserereturn references to necronst static objects. These conventions allow objects of the same
class to be independent of each oth&l. API classes are thread-aware, and multiple threads are allowed to operate on

objects of the same class provided tha t each thread is operating on its own object. However, threachware objects are not
permitted to be operated on by multiple threadsditme without the use of a mutex. The notion of thraadre is commonly
calledclassthread-safe.

Thread-Safe Multiple threads are allowed to operate on the same object. The only API classes that aisatbrassithe
RT_Consumer and the FDF class.

Read-Only: It is safe to return a reference to a const static object provided that this object has a well-defined lifetime and cannot be
modified. This allows multiple threads to use the same object in a read-only mode. The RT_FieldMap::get_default() method is an
example of returning a const reference.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

12

FACTSET) SEE THE ADVANTAGE

Chapter 2 Building Applications
2.1 Toolkit Organization

ForMicrosoft platformsthe toolkit is extracted from a simple Windows MSI file. The installation fekpecifiecdduring
installation using a standamialog(C\User&xx\AppDatdLocalFactSaDataFeed).

ForUnix platformsthe toolkit isa selfextracing shell script. The script extracts the tar archive located at the end of the script. All
platforms follow thdirectory hierarchy outlineéh the following table.

Directory/Filename Contents ~ Additional Notes
RELNOTES.TXT Contains the latest release notes
for this version of the toolkit.
VERSION.TXT Contains the toolkit's version label
and build number.
CHECKSUMS.TXT A file containing the check-sum of
each file in the toolkit.
LICENSES.TXT Contains license agreements.
bin/ Binary utilities and samples. For Windows, this directory also includes the actual
debug and release DLL's.
etc/ Definition files Example: rt_fields.xml
include/ The API header files All the include/ files are in the FDS subdirectory
lib/ The API library files Each platform will have its own folder (e.g., mswin).
See the library naming convention section. A
subdirectory exists for each supported platform.
log/ Sample programs and utilities will | Microsoft applications are able to use the registry
log to this directory. to ensure logs get placed in this directory.
sample/ Sample applications Each folder in this directory is targeted for a
particular language (e.g., the API_C++ folder
contains C++ applications).

2.1.1 Supported Compilers, Operating Systems, and Architectures

Every effort has been made to test different compilers, versions, and architectures using this APl. However, the C++ language does not
dictate standards at the binary level. Compiler vendors are free to implement many of the standard C++ concepts in their own way. Some
examples include exception handling, name mangling, and multiple inheritance implementations. Therefore, application developers may
be forced to use a limited set of compilers supported by this toolkit.

The toolkit currently supports the following platforms:

1 Linux using g++ (Compiler version 4.4.7 and 4.8.5)
1 2010/10.0 (Compiler version 16.0)
9 2012/11.0 (Compiler version 17.0)
1 2015/14.0 (Compiler version 19.0)

Additional platforms may be added in the future. Please cohtatEet Consulting Servidika platform does not appear in the list
above.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

13

FACTSET) SEE THE ADVANTAGE

2.1.2 Library Naming Conventions

To support multiple versions and avoid incorrect linking of this toolkit, this library followedlalefined naming convention:
For Windows:

fdsrt_{compiler/vesion} {arch} {os}Hflags}.{ext}

Where:

7 {compiler/version} can be one of the following:
0vcl10 for VS2010
ovc110 for VS2012
0vc140 for VS2015
1 {arch}is presently set to x86
1 {os} can be one of the following:
owin32 for 32-bit,
0 winé4 for 64-bit
1 {flags} is either blank, or "d" for debug

T {ext} the file extension:
o .dlL: for Windows at run-time.

o .lib: for Windows at link-time.
Examples:

9 fdsrt_vc10_x86_win32.dll
1 fdsrt_vcl140 x86_winé4d.dll

For Linux:

libfdsrt_{major version}{minor_version}{compiler/versionfarch} {osHflagsiext}
Where:

{major version} is current major version (presently set to 2). See the versioning section.
{minor version} is current minor version (presently set to 4). See the versioning section.

{compiler/version} is the current compiler version (presently set to gcc4)

{arch} is presently set to x86

=A =4 =4 A =4

{os} can be one of the following:

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

14

FACTSET) SEE THE ADVANTAGE

0 linux32: Linux 32-bit
0 linuxé4: Linux 64-bit
1 f{flags} is either blank, or "d" for debug

M {ext} the file extension: .so

Examples:
T libfdsrt_2_4 gcc4 x86_linux32.s0
1 libfdsrt_2_4_gccs x86_linux32d.so
T libfdsrt_2_4 gcch x86_linux64.so
1 libfdsrt_2_4_gccs_x86_linux64d.so

2.2 Compiling Applications

The first step in compiling an application would be to extract the toolkit archive to a directory. The important suiedirfector
building applications aracludeandlib. There is only a single set of include files for all supported platforms,dyyt@atform will
have its own library. The naming convention of each library was outlined in s@ctigih ibrary Naming Conventions

To simplify the following steps, assume that the root of this archive is locdteld$nh ROQTh the default case this would be set to
@C\Usersxx\AppDatalocalFactSeDataFeed3-

2.2.1 Microsoft Platforms
Whenusing Microsoft Visual Studio the following must be added to the project settings:

1 The path must include the API directory. This can be accomplished by either using the /I compiler switch directly, or by changing
the project properties dialog (C++ folder, General Sub-Item, Additional Include Directories Textbox). The {FDS_ROO®difectory
should be added to this list. Multiple items can be separated by a*;". This step should be done for ALL configurations (i.e.,
Debug, Release, and any others that are defined).

1 The library path should include the {FDS_ROGiBymswin directory. This can be done using the /LIBPATH compiler switch or it
can be accomplished via the project properties dialog (Linker folder, General Sub-Item, Additional Library Directories Textbox).
This should be done for ALL configurations (i.e., Debug, Release, and any others that are defined).

It is not necessary to add the library name to the project properties. The API header files will insert a pragma comment for th
Microsoft linker. The correct library name will be picked at compile time based on the hiesdzndithe configuration used.

Since the exact library is chosen at compile time, it is important that all applickfimed configurations that use the Debug-run
time library also set the _DEBUG preprocessor macro. Configurations that use the Reteaedibmary should not sehe
_DEBUG macro. This is a standard Microsoft convention that is already defined in the default Debug and Release &onfiguration

3 It is often better to use relative paths for toolkit installation directory (e.g. the sample applications in the toolkit use the relative path “..\..\..\" to locate header and library
files).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

15

FACTSET) SEE THE ADVANTAGE

2.2.2 Linux Platforms

When using the g++ compiler, certain compiler options should be verified:

1 g++ -v should report a threading model of POSIX

When compiling Linux applications using the g++ compiler:

T The {FDS_ROOT}/lib should contain a symbolic link named platform . This symbolic link is automatically created by the self-
extracting install script.

Example: platform -> ./ gcc3 _x86_linux64

9 The i pthread option should be passed to all application source modules.

1 The Tl switch should be added to include the {FDS_RO®@iidlude directory.
Example: - | {FDS_ROOTY}include

1 The i L parameter should be passed to the linker to include the following directory:

{FDS_ROOT}/ib/platform directory
Example: i L{FDS_ROOTYlib/platform

1 iTlfdsrt should be added during linking to link the FactSet DataFeed API*.

2.3 Running Applications

Dynamic libraries need to be installed on aggtem that will execute applications built using the API. It is the responsibility of the
application developer to ensure these libraries are available on alimensystems.

2.3.1 Windows Systems

Microsoft has a welllefined search order for applioatis that need to locate a DLL. The exact reference article can be found at
https://msdn.microsoft.com/ers/library/windows/desktop/ms682586(v=vs.85).aspx

In most cases, applications will search the directory in which the application is loaded, then the system directories {meluding
Windows systems directory), and finally all directories listetthénPATH environment variable.

Application developers thaise the FactSet DataFeed API should ensure that the fdsrt DLL is available and locatable-timell run
systems. It is common to place this DLL in theesdimectory as the application.

In order to connect to the local FactSet workstation and use ilaaourcethe current minimum supported or a more recent
version of the~actSetvorkstationl t r s ad hmrs > kkdc nm sgd trdqgq-r | > bghmd-

“The platform directory and fdsrt file are symbolic links to a platform-specific directory and library name.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

16

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

FACTSET) SEE THE ADVANTAGE

2.3.2 UNIX Systems

Applications linked with UNIX dynamically linked libraries (so files), will use the path at liakdifocate its shared libraries. If the
production systems have these libraries installed in different locations, there are two options. The first is to ket fteginio use
a different runpath. The second is to set the LD_LIBRARY_PATH enntireariable before starting the application. This variable
should cordin the path of the libfdsrt_2_4platform}.so file. The symbolic link, libfdsrt.so, is not needed on thénmarsystems.

The dynamic loader utilitydd , can be used to verify thall applications are able to locate all dependent shared objects.

2.4 Versioning

The FactSet DataFeed APl is a dynamically linked library which has a startigithv@rsion (x.y.z) label. The first number is the
major release number (x), followed by tinénor release number (y). The last number, (z), is the revision number.

Changes in only the revision number (z) will guarantee binary compatibility with existing applications (i.e., recompiN@dn i
necessary). Changes in the minor release numb@&ngure source code compatibility, but applications built previously MUST be
recompiled to use the newer library. A change to the major release number (x) may require source code changes for older
applications. The severity of the change depends cARheelease notes, and the manner in which thgliaption makes use of the
API.

For example, if the current API version is 2.0.1 and the new APl is 2.0.2, applications may take advantage of the sHixdsature
simply by installing the library on the nitime systems. If the new version label is 2.1.1, the application must recompile, but source
code changes are not necessary. A version change to 3.0.1 may require source code changes (depends on the typedftehanges :
application). A complete lisf changes for a particular release will always be in the release notes located in the toolkit archive.

2.4.1 Version Control

UNIX and Microsoft version control methods differ drastically. UNIX .so files have version information embedded into the
applicdion (soname) at link time. The actual .so file used by the linker is a symbolic link to the most recent version. , Tieavefore
applications will use the latest library, while older applications can still find the version of the .so file used wipptidhtam was
originally linked.

Since it would be errgorone to have developers manually change the name of the library for every new release of the toolkit, the
library uses#pragma commenstatements in its header files. These statements instredirtker to load in the correct library.
Application programmers should not include the library name, and therefore do not need to modify their project settitige @ach
new library is installed. Although this hides the exact name of the librarytlilerapplication developer, it guarantees the proper
library name at link time. In addition, it ensures that the correct library type is being linked (Debug or Release).

> Older versions of the library are kept in the toolkit archive until an end of life agreement has been reached.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

17

FACTSET) SEE THE ADVANTAGE

Chapter 3 Programming with the API
3.1 Program Setup and Initialization
3.1.1 Standard Conventions

This API is designed so that its interfaces adhere to a common set of standards. The following conventions are uaetbby the F
reaktime API:

1 All class names start with the three character prefix “RT_." The exception is the FDF class (which is used as a proxy to the proper
RT_Consumer class).

1 All methods are lower case with the *_’ character to separate words.

1 All methods that need to return an error do so via the rt_errno Enumeration.

1 Al INparameters are passed into APl methods either by value, const reference, or const pointer. The only exception to this is the
closure argument. It is passed as a non-const pointer although the API cannot modify the contents of this area.

1 Al OUTparameters are passed into the application via a non-const pointer argument given by the application. The application is
responsible for allocating storage of the actual value being passed out.

T AW IN/OUPparameters are passed in by non-const reference.

Most APl methods will accept and return null-terminated “C” strings (i.e. const char *). However, real-time data fields are NOT
null-terminated. In this case, the API can return a simple structure called an RT_Field. This structure contains a pointer to the
data, along with the size.

3.1.2 Closure Arguments

Hs hr bnllnm eng @OH-r sg s rtoongs b kka bjr sn “~bbdos ¢t
closure arguments, are passed back to the application as parameters to the callback function. All API functions that acce
callback, will also acceptvaid * closure argument. It is up to the application to define its meaning. The API treats this pointer as
an opaque piece of data and will not modify its content.

3.1.3 Namespaces and Included Files

Alltheincludede hkdr rgnt kc ad gEDSHqdm®ghr t qdinf s s g dfiles Whghe $hérdameo g d u
from clashing with the API versions.

A single include file is all that is needed to support the majority of the classes and methoasARth Applicationsiustinclude
®ECR. gs” oh-g hm “kk rntgbd I nctkdr trhmf @OH et mhishnmr -
identifiers are needed. The fields file is kept separate due to the potential for maggs@nd the size of the file.

All API methods and classes are in Bi@Snamespace. Applications should either preface all API classelS8tior use the
following statement.using namespace FDS

3.1.4 The FDS::FDF Class

Since many applications will nneed a single connection to the Data Server (and hence a single RT_Consumer object), the class
FDF can be used for convenience. This class consists of purely static methods and can be treated like a Singléterdefaulies
RT_Consumer object ti®e implementation. There is only one default RT_Consumer object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

18

FACTSET) SEE THE ADVANTAGE

3.1.5 A Complete Example

#include <iostream>
#include <string>
#include "FDS/rt_api.h" /l'include the API header files
#include "FDS/rt_fields.h" /l'include the API fields file
using namespace std; /I for convenience
using namespace FDS; /I for convenience
void on_message(int tag, const RT_Message *msg, const RT_Record *rec, void *c)
{
/I Uncomment to print each update message and cached record
/I cout << " Message: "<<* msg <<" \ nRecord: " <<* rec <<endl
if (msg >is_error()) {
cout << "Error; " << msg- >get_error_description() << endl;
/I Note: msg- >is_closed() must be true
FDF::cancel(tag);
return
}
string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();
string bid = rec - >get(FIDS::BID_1).to_string();
stringask = rec - >get(FIDS::ASK_1).to_string();

cout << "Update: " << msg_type << " Bid: " << bid
<< " Ask: " << ask << end|;

/I if the server closed the stream close our side as well
if (msg >is_closed()) { FDF::cancel(tag); }

}

int main(

{

int argc, char **argv)

rt_errno err;
RT_FieldMap::create("../../..letc/rt_fields.xml");
FDF::set_connection_info("client:secret@api - stage.df.factset. com");

err = FDF::connect();
if (err) {cerr<<"c:"<<err<<endl return (int)err;}

int tag;

/I create a real - time RT_Request for service=FDS1, symbol=FDS - USA

RT_Request req("FDS1", "FDS - USA™;
FDF::request(req, on_ message, NULL, &tag);
cout << "made a request for " << req << " tag=" << tag << endl;

/I dispatch message s

while (
FDF::

}
}

true){
dispatch (- 1);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

19

FACTSET) SEE THE ADVANTAGE

3.2 Connecting to a Data Source

An application connects to a data source during initialization. There are two options when picking a data source to:cennect
FactSet Data Server and the local FactSet workstation. A connection to a FactSet Data Server occurs over the Inté¥nétor a WA
SBO. HO- @ bnmmdbshnm sn sgd knb k E > bsRds vngjrs shnm nbhbt
applications should set the connection information, and then call the connect() fulictioonnect to the local FactSet vabation,

only a call to the workstation_connect() function is required

By default, connect() and workstation_connect() are synchronous, and in rare cases a call may block for an extendeihperiod of
(currently set to 60 seconds). If applicationgwtisuse a noi#blocking connect, true should be passed as to the async parameter of
the connect functions.

The host for production dataapi.df.factset.corfor production andapistagedf.factset.confor beta. If canned data is required for
developmenpurpossthe hostcannedstage.df.factset.comith the FDS_C servishouldbe used.

/I connect to api.df.factset.com with user= "client " and password= "secret "
err = FDF::set_connection_info(" client:secret@api.df.factset.com ");

err = FDF::connect(); /I connects synchronously to a Data Server
err = FDF::connect(false); /I connects synchronously to a Data Server
err = FDF::connect(true); /I connects asynchronously to a Data Server
/I connects synchronously to the FactSet workstation

err = FDF::workstation_<lo2n3dedc)t;(ACLI ENT

/I connects synchronously to the FactSet workstation

err = FDF::workstati on_<lo2n3rdedc,t (AMOCL ITEABNTs e) ;
/I connects asynchronously to the FactSet workstation

er= FDF: :workstation_conh284¢d ACMlLd ENITrue) ;

A synchronous connect operation will block until both the connection is established and the application has successfully
authenticated with the data source. If a synchronous connect operation faiisaipps must do one of the following:

1. Retry the connect operation at some future time.
2. Connect asynchronously.

3. Exit the application.

x integrators are expected to limit the number of connection retirés case of failures toavoid unnecessary load o
the DataFeed serversAbusing the services may result ithe accountbeeing locked down without any prior notice. |
there are any questions on the design of the service please reach out to your FactSet representitive.

An asynchronous connect operation wéturn immediately. If an asynchronous connect operation returns an error, a connection
will never get established. In this case, the application should log the error and exit. This is a rare conditionlvenighhagpen
if an operating system resme could not be created (like a thread).

¢ The workstation_connect() and the FactSet workstation need to be run under the same user or FactSet will give an error that there are more than one instance of Marquee
running.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

20

FACTSET) SEE THE ADVANTAGE

Upon returning from a successful asynchronous connect operation, the connection and authentication will be processéd by an AP
thread. A control callback will be invoked after a successful or unsuccessful acparation. If the connection fails, the
connection is retried periodically

x If connect()or workstation_connect() return an error, the connection will never get establishedApplications
must issue a successful connect before dispatching any messagékis behaviour is true for both asynchronous and
synchronous connectionsHowever, applications are allowed to make requests before a connection is established. These
requests are queued internally within the API until a successful connection is established.

3.2.1 Connection Strings

Currently both basic autehtication and CFime passwortlis valid authentication methods but users are being migrated to OTP. In
order to connect to a FactSet Data Server, the application must set the host name (or IP address), the port numbemthe usern
and the password. These items shoulghssed into theet_connection_info() method as parameters. The function takes
null-terminated strings as input. The following outlines some examples.

One TimePassword- set_connection_info

set_connection_info("apistage.df.factset.com”, “client”, "AAAA", NULL, NULL, "@Path\To\Counterfile", false); £ The API

vhkk bnmmdbsr ss'nf ds-ged” bgsnrrdss -Gbnolhh nm sgd cde tks ongs ne ®557
password generated by the key and counter as per 3.2.1.1thsikgy ID AAAA and the key and counter file

C\\PatR\Td\Counterfile

Basic Authetication - set_connection_info

set_connection_info@lient:aaa@apir s~ f d- e~ tSmgdls @OMHI vhkk bnmsmdbd-enbsgdsghnk

ongs 7Me -®53Hs v hkkclenfrd> mc trdgm ddnae ®e ® ° -

set_connection_infd cdient? 0/ - 1 - 3 -3/ 53@OH(vhkk bnmmdbs sn sgd gnrclenf0o/ - 1
The password is empty in this case.

set_connection_info(NULL)} The API will use the global property RT_CONNECTION from the FDF class. The format of the
RT_CONNECTION string is explainédirendix D and is identical to that of the previous exde(e.g. clie®10.2.4.5:4063).

rds*"bnmmdbshnm®hmen' ®qdf 9. GJ DX" KNHBI@RKPI| wi@Bok forMDrogeny@amed gd . E™ b ¢
RT_CONNECTION in the Windows registry. The hive location is HKEY_LOCAL_MACHINE, and /SoftwaFel-teJetth
within the hive.

rds” “bnmmdbshnm®”hmen’' ®e htkiteAPI el lIbok forra property samedRT HCARNECTIGNTfIN the file
/etc/connection_info.cfg. The format of this file is givémirendix E.

Itis also possibletose | t k shokd bnmmdbshnm rsqghmfr s nmbiThefollowingmln s dr
example.

" If the connection is terminated (via a TERMINATE control message), connection attempts will no longer be retried. This is typical when the user credentials are invalid (see

Appendix C).
8 FactSet leverages the HMAC-Based One-Time Password Algorithm described in RFC 4226 (http://iwww.ietf.org/rfc/rfc4226.txt) and session tokens to ensure all requests to

the APl are made by authenticated users.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

21

FACTSET) SEE THE ADVANTAGE

r ds ”bnmmd bckeht man@ apitage.fad@set.conjclient:aaa@apistage2.factset.com £ When multiple connection
strings are spafied, the API will attempt to connect using each connection string, until a successful connection is made. If the
connection is subsequently lost, the API will continue trying to connecting using each connection string.

The set_connection_info() methatlidl only return an error if the host could not be extracted given the specified uri. It does not
check if the host is valid, or if the host can be translated to an actual IP address. It will simply store the corfoectatiomfor
later use. The omect() method will later use this information to resolve the hostname and port before attempting theicornaect
the FactSet Data Server.

x If connect() is called when already connected the first connection will be cancelled and the new connectiomevjl
re-established with the new Connection String.

3.2.1.1 Retrieving the One Time Password®

The auhentication protocol for Exchange Datdd is using One Time password. Atitfigal setup the key administtar'® will need
to follow the below steps to generate the key and counter requikatthenticatevith OTP.

Go to http://auth-setup.factset.com

Login using the FactSet .NET account received in the welcome email.

Enter the serial number tied to the server account used to connect to the feed.
Make sure the PROD is selected, rather than BETA.

Click Get New Key.

2 T o A o

Create a new file - On the first line, copy and paste the “Key” from the web site (dont include the word “Key:”, just the actual
string).

~

On the second line, copy and paste the counter value.

8. Save this file as <Keyld>.data. Most likely that will be “AAAA.data” and use this file as input in the set_connection_info function
as per below.

9. Alternatively take note of the values and use directly in set_connection_info.

3.2.1.2 Connect with OTP

In the below samples threfferentexamples of how to use the key and counter extracted above is used in
set_connection_info

/I Connect to api - stage.df.factset.com with user="client" with key/counter file

/I C: \ Path \ To\ Counterfile \ AAAA.data contains the key (hex string) on the first

/I line and the counter (decimal format) on the second, for user "client" and Il
device ID "AAAA"

? All users will migrate to OTP in the future
10 The key administrator needs to be given access to be able to generate the key, contact your FactSet representative to get the required access enabled.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

22

http://auth-setup.factset.com/

FACTSET) SEE THE ADVANTAGE

FDF::set_connection_info("api - stage.df. factset.com”, “client", "AAAA", NULL, NULL,
"C: \'\ Path \ \ To\ \ Counterfile", false);

/I Connect to api - stage.df.factset.com with user="client" with key/counter file, Il or
given values if no file exists
I1fC: \ Path \ To\ Counterfile \ AAAA.data contains a key a nd counter, those will be /I used

instead of the given key "5¢706e..." and counter "730332..."

/I Otherwise the given key/counter will be used and

/[C:\ Path \ To\ Counterfile \ AAAA.data will be created from the given values to be
/I used for subsequent atte mpts

FDF::set_connection_info("api - stage.df.factset.com”, ‘“client", "AAAA", "5c706e...",

"730332...", "C: \'\ Path \\ To\ \ Counterfile", false);

/I Connect to api - stage.df.factset.com with user="client" with given values

/I regardless of existing key/counter file .

/I The given key/counter will be used and C: \ Path \ To\ Counterfile \ AAAA.data will be 1
overwritten or created from the given values to be used for subsequent attempts

FDF::set_connection_info("api - stage.df.factset.com”, ‘“client", "AAAA", "5c706e...",

"730332...", "C: \'\ Path \\ To\ \ Counterfile", true);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

23

FACTSET) SEE THE ADVANTAGE

3.2.2 Synchronous Connect Sequence Diagram

Application APl API ata
Thread Server
set_connection_info()
< Method returns immediately,
1) connect() >
2) gethostbyname()
<
3) TCP Connect() | >
1
1
< 4) TCP_ ACK/NAK !
|
1
o 5) Diffie-Hellman Key Exchange -
|
1
6) Encrypt(user, passwoérd) and send Login >
1
< 7) Login ACK/INAK |
]
8) Start API Thread >
< 9) connect() returns
v v v v
Figure 3: Synchronous Connect Sequence Diagram
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

24

FACTSET) SEE THE ADVANTAGE

3.2.3 Synchronous Connect Example

#include <iostream>
#include <string>
#include "FDS/rt_api.h"
#include "FDS/rt_fields.h"

/l'include all system header files

/I include the API header files
/I include the API fields file

using namespace std; /I for convenience
using namespace FDS; /Il for convenience

int main(int argc, char **argv)

{
string connection = "client:secret@api - stage.df.factset.com:6681";
rt_errno err;
RT_FieldMap::create("../../../etc/rt_fields.xml");
FDF::set_connection_info(connection.c_str());
/l'if using OTP
/I FDF: :set _connectiontagtofifiaphctset.
/I NULL, \fRath\\To\\Counterfileodo, false);
err = FDF::.connect();
if (err) { cerr << "conn: " << err << endl; return (int)err;}
/1 é
/maker equests
/I process the event loop and handle the callbacks
/1 é

}

como,

ficl

ent o,

f

The example code above demonstrates how to connect to the Data Server synchifénously

The first step in many programs would be to load a Field Map file. This file is located in the etc directory of thEheakde

anud trdr gdk > shud o sg knb shnm

®- - . - - .

AAA/

- - atiahsshould s * e h d k
ensure that this path is correct (create() will return NULL if the file could not be located or opened). The RT_Fiddap<la

the application to translate field names to ids and vice versa. Although this step is not absolutshryigiceelps with debugging

and troubleshooting. For more information on the RT_FieldMap class, see ééciidgaT_FieldMap Class

The second step is to pass in the connection information (i.e., apsstage.df.factset.cqrport = 6681, user = client, password =
secret). After setting the connection information, the application calls connect() to attach to the Data Server.oRat delditis

on setting the connection information, see sectigrii. Connection Stringer sectiord.6.1 RT_Consumer Class

1 All of the supporting code outlined in this section is provided in the sample toolkit directory named Example3.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.
25

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

3.2.4 Asynchronous Connect Sequence Diagram

Application

>
e

set_connection_info()

»

< Method returns immediately

1) connect()

< 3) connect() returns

2) Start API Thread

APl Data
Thread Server

4) dispatch()

< g) Queue control msg.

a) gethostbyname()

>

b) TCP Connect() >
< c) TCP ACK/NAK

d) Diffie-Hellman Key
< Exchange >

e) Encrypt(user, password)
and send Login >

¢) Login ACK/NACK

| 5) control callback()

v

v

Figure 4: Asynchronous Connect Sequence Diagram

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

26

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

3.2.5 Asynchronous Connect Example

#include <jostream>
#include <string>

#include "FDS/rt_api.h" Il include the API header files
#include "FDS/rt_fields.h" /I include the API fields file
using namespace std; /I for convenience

using namespace FDS; /Il for convenience

int main(int argc, char **argv)

{

string connection = "client:secret@api - stage.df.factset.com:6681";
rt_errno err;

RT_FieldMap::create("../../../etc/rt_fields.xml");

FDF::set_connection_info(connection.c_str());
/l'if using OTP

/I FDF: :set _connectiontagtofifiaphctset.

/I NULL, \fRath\\To\\Counterfileodo, false);

err = FDF::connect(true); /I connect asynchronously
if (err) { cerr << "conn: " << err << endl; return (int)err;}
I é

/I make requests
/I process the event loop and handle the callbacks
/1 é

como, ficlient o,

The example code above demonstrates how to connect to the FactSet Data Server asynchronaeuoslg.isTidentical to the

previous example except for an additional parameter passed into connect().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.
27

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

3.3 Requests and Cancels

3.3.1 Opening the Stream

Requests are made either using Ei2F::request() or RT_Consumer::request() method. Although requestse
typically made after connection establishment, the application can make requests at any time. If the API is discomméoged fro
server, or a particular service is not available, requests will be queued internally by the API. The request mefihed &sd
follows:

rt_errno request (const class RT_Request &req, RT_Consumer::MesgC B cb, void *closure, int
“tag);

The RT_Request class is the first parameter required by the request() method. This class can be constructed usarnypekegrvice
A senice is a string that identifies a data source and the symbol is the key for that particular data source. In addition, the
RT_Request object allows applications to explicitly set the snapshot flag to true for a static request and false far r2glyesnf
dynamic request will open a virtual stream with the Data Server for that particular data element. A static requestopdraiso
virtual stream, but the first message on that stream will indicate a closure of that stream. This type of régpiesiyscalled a
shapshot request.

The second parameter of the request method is the appliedditmed callback procedure. This procedure is defined as a
RT_Consumer::MesgCB amdst have the folling signature:

void (*)(int tag, const RT_Message *m sg, const RT_Record *rec, void *closure);

This callback function will receive the subscription tag, along with the message and cached data record. The finalipdhemeter
closure argument which will match the thirduameter of the request method.

On ach call to RT_Consumer::request() a tag will be returned via an OUT pardiveteif the function returns an error such
as RT_E _NO_CONN or RT_E_NO_SERYV, a valid tag will be returned (since the request has been queuddljs tag is an
integer and is th resource id for the stream that has just been opened. A tag is returned for both static and dynamic requests.

3.3.2 Closing the Stream

The messages for a stream will be passed to a callback function along with the stream id. Eventually the steebmdbsetl and

the resource tag freed. This resource can be freed in either two ways: 1)RaHimdjsconnect () or 2) calling

FDF::cancel(tag) . The stream will continue to be open until one of these two functions is called. This is true even for
snapshot requests. As mentioned before, snapshot data is treated as a request for a single message, and that message should h
the close (end of stream) indicator set. This indicator tells the application that the stream is closed on thidesetisrthe

responsibility of the application to make sure the tag is cancelled after receiving the snapshot message. A calivtill cdosel()

the stream on the clierttide.

x Canceling a tag that was already cancelled results in undefined behavior. Leaking tags can cause applications to
consume more memory and respond slower. Applications should treat tags like they treat open files, or pointers to
heap-allocated memory.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

28

FACTSET) SEE THE ADVANTAGE

3.3.3 Tag Ownership and Lifetime

Tags are assigned by the API and given to clients. The lifetime of every tag is controlled by the application. Apaatiags
via the request() method and free the tag via the cancel() method.

Clients cannot ch@e the tag identifier. They are assigned by the API. Instead, the closure argument can be used by clients who
need an applicaticdefined identifier for each open stream.

3.3.4 Dynamic Request

void on_message(int tag, const RT_Message *msg,
const RT_Record *rec, void *closure)
{

cout << "Message: " << *msg << endl;
cout << "Record: " << *rec << endl;

if (msg- >is_error())
cout << "Error: " << msg - >get_error_description() << endl;

/I if the server closed the stream close our side as well
if (msg- >is_closed()) { FDF::cancel(tag); }

int main(int argc, char **argv)
{

/I set up connection (see previous code)

int tag;

/I create a real - time RT_Request for service=FDS1, symbol=FDS - USA
RT_Request req("FDS1", "FDS- USA");

FDF::request(req, on_ message, NULL, &tag);

cout << "made a request for " << req << " tag=" << tag << endl;

/I process the event loop

Sgd dw Il okd bncd "~ anud rgnvr =~ -TRé@pt d ms dagd s gi®ind®BeRapshat flad g gl ¢h |
parameter for creating the RT_Request is false, the request is for a dynamic subscription. The RT_Request objectagtte passed
request method, along with the callback, message. In this example, the closure argument is mged and set to NULL. The
resource id for the stream is returned in the local variable tag.

The callback simply prints the message and record. However, it does check to see if the stream was closed, ars# g it clo
clientside stream by candef the tag. The server may close the stream at any time. In addition, error messages (e.g.,
RT_E_NOT_FOUND) will cause the stream to set the clasfesgedm indicator. The example callback handles both of these
conditions.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

29

FACTSET) SEE THE ADVANTAGE

3.3.5 Static Request

void on_static_message(int tag, const RT_Message *msg,

const RT_Record *rec, void *closure)
{
cout << "Message: " << *msg << endl;
cout << "Record: " << *rec << endl;
/I No reason to check is - >closed(), since we only want a single
/I message. So just call cancel() after processing
FDF::cancel(tag);
}

int main(int argc, char **argv)

{
/[set up connection (see previous code)
/I create a static RT_Request for service=FDS1, symbol=IBM - USA
/I The parameter "true" sets the snapshot_only flag
int stag;
RT_Request sreq("FDS1", "IBM - USA", true);
FDF::request(sreq, on_ static_message , NULL, &stag);
cout << "made a static request for " << sreq << " tag=" << stag << endl;
/I process event loop
}

The requestor snapshot data is similar to the one for dynamic data except that the snapshot parameter is set to true. In fact, the
callback from the previous example could have been used in this example. Since static requests will close the striéain on the
meg fd+ sgd ogduhntr nm~ldrr fd b kka>bj vntkc g ud b > mbdk
intentions more clearly when the call to FDF::cancel() is explicit (like above), rather than based on a predicater¢ikeuse p
example).

3.3.6 Bulk Subscriptions
Where possiblgit is recommended that applications request subscriptions in bulk. The bulk request method is defined as

rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb, void *closure,
std::vector< int > &tag s);

12 Options are not supported within bulk requests at this point

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

30

FACTSET) SEE THE ADVANTAGE

| x Notethat the bulk interface is only supported for the FDS1 service

The significant changes between the bulk interface and the regular request interface are:

1 The key for the RT_Request should be a comma-separated list of symbols, rather than a single symbol.

7 Rather than populating a single tag, request() populates a vector of tags. The first tag represents the tag for the entire
subscription — if this tag is cancelled, every symbol in the bulk subscription will be cancelled. The following tags are the tags for
the individual symbols in the same order they were provided to RT_Request. These may be cancelled individually if the
subscription is no longer desired.

Beyond these differences the bulk interface acts identically toaheast interface. Whenever a message is received for any of the
symbols in the bulk subscription, the callback specified to request() will be called. The tag that is used in thes ¢h#ltagkaf the
individual symbol, not of the bulk subscriptioa a whole.

See the BulkWinQuote sample utility for an examplewfthe bulk interface is used.

3.3.7 Canceling Requests

Applications cancel the request using the tag given at the time of request. Applications can cancel the tag at anyhieher¢eve
receiving the first message). Once the application returns from the cancel() method, the callback function for trierddisest i
by that tag will NEVER be caltédThis guarantee simplifies programming by allowing the application to clean up esassx for
callback processing immediately after the call to FDF::cancel(). This cleanup is typically done in destructors, ihtidtalee
to be the case.

Once a tag is cancelled the integer identifier can be reused. This is typical, andritas ¢or the next request to be given the exact
r-1ld s f “r ° ogqgduhntrkx b mbdkkdc rsqd I - Gnvdudqggessghr
from the previous stream cannot be delivered to this new stream.

13 If the callback is registered by more than one stream, only the stream identified by the tag is affected by a call to cancel(). Streams are allowed to share callbacks, and
canceling a stream will only prevent the callback from being used in the context of the cancelled tag.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

31

FACTSET) SEE THE ADVANTAGE

3.4 Processing Events

3.4.1 Normal Dispatching

int main(int argc, char **argv)
{
/I set up connection (see previous code)
/I make a request (see previous code)
/I dispatch messages
while (true) {
FDF:: dispatch (-1);
}
}

In order to dispatclmessages to the appropriate callbacks, control must be handed back to the API. This is accomplished by callin
FDF:: dispatch (é.) This method will flush all of the currently queued messages and return.

The above code calls dispatdh(n an infinite loop Passingl as a parameter will inform dispatch to wait indefinitely for events to
dispatch. However, the function will still return if at least a single callback was invoked. This is why the examplés aigpatch
in a loop.

Reponses from the FactSet Data Server are treated as events. These events are delivered via the callback that hadisetup at t
of request. If the application wants to prevent blocking indefinitely, they can pass in a time value in millisecondsralué of
zero will flush all messages and return immediately. For more informatidispatch () , see sectior.6.1 RT_Consumer Class

3.4.2 Handling Errors

Dispatch can return two errors: RT_E_NO_CONN and RT_E_SHUTDORN.ETBelUTDOWN is a serious error and may be due
to the application deleting the RT_Consumer object, invoking disconnect(), or not handling a TERMdN#JIEnessage. The
only other reason dispatch can return RT_E_SHUTDOWN is if the applicationsumdbaisuccessful connect() in the first place.

x As long as the application issues a successful connect() and NEVER deletes the underlying RT_Consumer object,
dispatch() will never return RT_E_SHUTDOWN.

The RT_E_NO_CONN error is returned when the sermetwork disconnects the TCP connection to the API. This error is not as
serious as RT_E_SHUTDOWN. As long as the API was once connected (via a successful call to connect()), the API will retry the
connection every so often. Applications are encourt@ethintain the event loop during this time period, however, they can
disconnect if they choose to do so.

14 A TERMINATE control message is only given when an application issues an asynchronous connect, and the server failed to authenticate based on the user credentials given
in set_connection_info().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

32

FACTSET) SEE THE ADVANTAGE

3.4.3 Integrating with a SelectLoop or XtWindows Loop

#include <iostream> /l'include all system header files
#ifdef WIN32

#include <winsock2.h> /I needed for select() on Windows
#include <windows.h>

#else

#include <sys/select.h> /I needed for select() on Unix
#endif

#include "FDS/rt_api.h" /I API header files

using namespace std;
using namespace FDS;

int main(int argc, char **argv)

{
/I set up connection (see previous code)
/I make requests (see previous code)
int api_fd;
int select_max =0;
fd_set read_fds;
rt_errno nerr = FDF::get_notify_socket(&api_fd);
if (nerr) { cerr << "No resource: " << nerr << end|; return
/I need to reset the select max descriptor
if (api_fd > select_max) select_max = api_fd;
while (true) {
FD_ZERO(&read_fds);
/'l FD_SET(é) ; delsctriptosse t
FD_SET(api_fd, &read_fds); /I monitor the API socket for read
int ndesc = select(select_max + 1, &read_fds, NULL, NULL, NULL);
if (ndesc<0) continue ; I/l handle errors
/I check the API socket descriptor
if (ndesc && FD_ISSET(api_fd, &read_fds))
/I the API wants to dispatch messages, call it with a 0 timeout
FDF::dispatch(0);
/I handle other descriptors
}
}

(int)nerr;}

ot her

app

Many sockeserver and XWindows applications are not able to call dispatchf) infinite loop. Instead, they either need to

manage a select loop or call XtAppMainLoop(). The API supports integration with these types of applications by supporting a
standard socket descriptor that will be re@ddy when dispatch() needs to be edll This descriptor is obtained via the call to
FDF::get_notify_socket(). The example code above shows integration with a standard select loop. To integrate witlbhwaa XtWind

loop, applications should use XtAppAddInput() and pass in the descriptore@éeim get_notify_socket().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.
33

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

3.4.4 Integrating with a Windows Loop Using WSAAsyncSelect

WSAAsyncSelect() is a Windows system call that allows a Windows message to be delivered based on events of interest from a
standard socket descriptor. The prototypethis call is as follows:

int WSAAsyncSelect(Socket s, HWND hWnd, unsigned int wMsg, long IEvent)

Applications can pass the descriptor obtained from get_notify_socket() into first parameter of the WSAAsyncSelect)dugction
with the handle to a widow, a usedefined windows message, and the readdy event (FD_READ). Windows will in turn deliver
windows messages to the window when the descriptor is-ready. Application should call dispatch(0) from the windows
procedure that handles the usgéefined message.

3.4.5 Integrating with Windows Using create_mswin_dispatch_window()

Using WSAAsyncSelect() to integrate with the Windows event loop can be tedious and prone to error. The API can setup all the
plumbing on behalf of the application witltall to create_mswin_dispatch_window(). This method will create a hidden window and
install a WSAAsyncSelect() notification to this window.

The thread that calls this function must be a GUI thread (i.e., it must have a GUI event loop). Furtherntoegdhislitbe the
context in which all callbacks are executed. In other words, all callbacks will be executed by the thread that calls
create_mswin_dispatch_window().

Once this call has successfully returned, the application does not have to makesatoyasgtiother event handling function such as
dispatch(). All callbacks will seamlessly be delivered during normal GUI processing.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

34

FACTSET) SEE THE ADVANTAGE

3.5 Processing the Messages

3.5.1 FID Value Pairs

The API makes heavy use of the widely accepted standard of represkatéiras field/value pairs. This sddfscribing data
structure tags all data elements with an integer identifier (FID or field identifier).

The value is typically some opaque binary data and its associated size. Every field/value pair has-ap@yneeahing by both
the data sources and the consuming applications. This meaning can never be changed once published to the applications.
Furthermore, the values are rarely ntdirminated. This allows data values to contain binary data. Applicationsdshever
assume nulterminated field values, unless the publishing esdarce makes this guarantee.

3.5.2 Field Identifiers

The current field identifiers are available in two files. The first is a standard C++ include file named rt_fieldidndefimss
humanreadable static constant integers for the current list of known field ids. This is the usual method of identifying adiekel b
in actual C++ code.

The second file is rt_fields.xml (also included in the toolkit). This file can be IyaithedRT _FieldMap class and allows applications
to translate human readable names to field ids at runtime (as opposed to compile time using the rt_fields.h file).

3.5.3 Messages

All requests open a stream, which is a virtual tunnel of messages. A mbasaggtain properties such as a type, permissions, a
key, and some other flags. Message data is contained in the RT_Message class.

An RT_Message is simply a container of fields (i.e., fids and values). The fields can be extracted using the mensdefimect
in the RT_Message class (see sedtiorz RT_Message Clfesmore information).

3.5.4 Records

To assist applications with managing the state of an open stream, a fully cached and updated record is availablébdakng ca
processing. The interface closely resembles that of a message. For more information, s€elsegtionRecord Class

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

35

FACTSET) SEE THE ADVANTAGE

3.5.5 Processing a Message Example

#include <iostream> /l'include all system header files
#include "FDS/rt_api.h" /l'include the API header files
#include "FDS/rt_fields.h" /l'include the API fields file
using namespace std; /Il for convenience

using namespace FDS; /Il for convenience

void on_message(int tag, const RT_Message *msg,

const RT_Record *rec, void *closure)
{
/I if the server closed the stream close our side as well
if (msg- >is_closed()) { FDF::cancel(tag); }
if (msg- >is_error()) {
cout << "Error: " << msg - >get_error_description() << endl;
return ;
}
string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();
string bid = rec - >get(FIDS::BID_1).to_string();
stringask = rec - >get(FIDS::ASK_1).to_string();
cout << "Update: " << msg_type << " Bid: " << bid
<< " Ask: " << ask << endl;
}
int main(int argc, char **argv)
{
/I set up connection (see previous code)
int tag;
RT_Request req("FDS1", "FDS - USA");

FDF::request(req, on_message, NULL, &tag);
cout << "made a request for " << req << " tag=" << tag << endl;
/I dispatch messages

while (true)
FDF:dispatch(- 1);

The example code above shows one way to process a message from a callback. The callback function simply prints thygemessage
along with the bid and ask. In addition, it checks to seeiftiteam was closed, and if so, it closes the didetstream by
canceling the tag.

The server may close the stream at any time. In addition, error messages (like RT_E_NOT_FOUND) will cause the #teeam to set
close/enebf-stream indicator. The ample callback handles both of these conditions.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

36

FACTSET) SEE THE ADVANTAGE

3.6 Threading

3.6.1 Thread-safe Classes

The only two classes that are completely threaf are the RT_Consumer and FDF classes. These classes manage the requests,
cancels, and the connection to fhectSet Data Server. Applications are free to call the methods of both the RT_Consumer and FDF
class using multiple threads.

3.6.2 Thread-unsafe Classes

The remaining classes are threaksafe. The reason is that these classes tend to be used byedlsiead at a time. The
RT_Request, RT_Message, and RT_Record are all container classes that are usually used by a single thread. Appiications shoul
provide their own locking if these objects need to be shared by multiple threads.

3.6.3 Class-thread-safe

Multiple threads are allowed to access different objects of the same class without locking. Creation and destructisracé eltige
threadsafe. This is known as being cliseadsafe. All API classes are cldzgadsafe.

| x Applications must lirk with a thread-safe runtime library. |

3.6.4 Read-only Objects

In many cases, objects are used in a realg manner after a onime initialization. If only const member functions are being
called, multiple threads may use the object at the same time.

x The RT_FieldMap class is not threafe, but the get default() static method returns a const pointer to a single
object. Therefore, as long as this default instance is always used via the get_default() method, its methods are thread
safe.

3.6.5 Threading Issues Using a Callback-driven API

A potential for deadlock exists when:

1 The application uses more than one thread (not counting the API threads).

9 More than one application thread uses the same RT_Consumer object.

x The FDF class is implemented using a sindggault RT_Consumer object. Therefore, if more than one applicatjon
thread use the FDF class, this condition is true.

9 The callback routine needs to lock a shared object that is used by another application thread which also shares the same
RT_Consumer object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

37

FACTSET) SEE THE ADVANTAGE

OR

The callback routine needs to wait on a thread that uses the same RT_Consumer object.

If all of the above statements hold true, applications need to be aware of two potential deadlock scenarios as ddsenitesd in t
section.

3.6.6 Avoiding Deadlock

The RT_Consumer class is thrsatk, but must also call back into the user application during the dispatch() routine. Furthermore,
the API is fully reentrant, and a callback routine is permitted to call additional API methods. To prevent a iaoe cowthich

one thread cancels a subscription right before the callback routine is about to execute, the API must hold a lock chlliregkhte
ensure that a cancel for that stream is held until the callback is firiShddue to this scenario,i# possible for the application to
deadlock. Care must be taken when in the callback rou@adibacks should not block on other threads that need access to

the API (i.e., use a threadpool where the thread-pool uses API functions on the same object).

Furthermore, callbacks that need to lock a mutex, critical section, semaphore, etc., should be careful of the lockiing order.
example, the following sequence of two application threads may cause a deadlock:

Callback Thread(1)

Application Thread(2)

Locks Object XXX
I/l some processing

Locks Object XXX
/I some processing

I é. /I calls an RT_Consumer:: method
Unlocks Object XXX Unlocks Object XXX
return /1 é

Since the application thread(#2) is locking object XXX and then calling an RT_Consumeritsi&ibkidg order is defined as:

1. Lock object XXX

2. Lock the RT_Consumer object (implicit from the method call)

3. Unlock RT_Consumer object (implicit from the return of the method call)
4. Unlock object XXX

Gnvdudqg+ sgd b kka bj dobogidg: c' "0(-r knbjhmf ngcdg hr sgd

1. Lock the RT_Consumer object (implicit from dispatch)
2. Lock object XXX

3. Unlock object XXX
4.

Unlock the RT_Consumer object (implicit from dispatch)

Since two threads lock the same objects in different orders, deadlock is possible. To eliminatddble, tiee sequence should be
changed to the following:

> The API guarantees that upon returning from cancel(), no additional callbacks on the closed stream are possible (see section 3.3.2 Closingi¢ Strearfor more
information).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

38

FACTSET) SEE THE ADVANTAGE

Callback Thread(1) Application Thread(2)

Locks Object XXX consumer.RT_Consumer::lock()

/l some processing Locks Object XXX

[l é. /Il calls an RT_Consumer:: method
Unlocks Object XXX Unlocks Object XXX

return consumer.RT_Consumer::unlock()

The fix involved adding explicit calls to RT_Consumer::lock() and unlock() in the second application threaecéilbaciothread).
It is safe for a thread to call an API routine if a lock is already held.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

39

FACTSET) SEE THE ADVANTAGE

Chapter 4 API Class Reference

4.1 API Constants

4.1.1 Error Codes

All errors within the API are conveyed to the application via the Enumerab@: rt_errno . The list of possible errors is noted
below. API methods that need to return error informatigth do so using thet_errno enumeration.

x The FactSet API does not throw standard or netandard exceptions. However, the underlying system libraries may
throw exceptions such as std::bad_alloc.

/'l include file: AFDS/ rt _errno. ho

namespace FDS {

enum rt_errno {
RT_NO_ERROR = 0, /I All'is good...
RT_E_START = -50, /I Start of RT errors
RT_E_UNKNOWN = -51, // Unknown error
RT_E_NO_SERV = -52, /I No Service Available
RT_E_NOT_FOUND =-53, // Field, or Record not found
RT_E RENAME = -54, /I Record has been renamed
RT_E_TIMEDOUT = -55, // Operation Timed Out
RT_E _EXISTS = -56, /I Already exists
RT_E_LIMIT = -57, /I Maximum application limit has been reached
RT_E_PROTOCOL =-58, /I Any Protocol error (message, file format, network)
RT_E_INVAL = -59, //Invalid parameter to method call
RT_E_RESOURCE =-60, // Operating system resource exhausted
RT_E_NO_CONN = -61, // No connection to the server
RT_E_VERSION = -62, //Incorrect versi on
RT_E_SHUTDOWN =-63, // User has shutdown the system
RT_E_ACCESS = -64, |/l Permission denied
RT_E_END = - 65 /l End of RT errors

2

} // namespace

4.1.2 Field Ildentifiers

Field identifiers are integers that can be used to index into eithé&Th&lessage or theRT_Record objects. The list of field
identifiers is available programmatically in the include®&E CR. gqs”* eh@&ck hlg° s hn mr s glensfiersladyd c s
a symbolic name can do so by including this field identifier file.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

40

FACTSET) SEE THE ADVANTAGE

4.2 Requests

API requests are made using R& Request class. ArRT_Request is a simple container class for the type of request, the
service for which the request is destil, and the key identifying a record within a particular service.

/'l include file: AFDS/ RT_Request. ho

namespace FDS {

class RT_Request /l FDS namespace

{
enum ReqType ({
REQUEST_TYPE_WATCH =1,
REQUEST_TYPE_SNAP =2,
REQUEST_TYPE_CANCEL = 3,
2
enum SymbolType {
SYMBOL_TYPE_UNKNOWN = 0,
SYMBOL_TYPE_NATIVE =1,
SYMBOL_TYPE_CUSIP =2,
SYMBOL_TYPE_ISIN =3,
SYMBOL_TYPE_SEDOL =4
2
/I Takes null - terminated character strings
RT_Request (const char *service, const char *key,
bool snapshot_only = false
RT_Request::SymbolType symbol_type = SYMBOL_TYPE_UNKNOWN,
const char *options = NULL, const char *auth_token = NULL);
/I Takes null - terminated character strings
RT_Request& set_service (const char *service);
RT_Request& set_key (const char *key);
RT_Request& set_options (const char *options);
RT_Request& set_snapshot (bool snapshot_only);
RT_Request& set_s ymbol _type (SymbolType type);
/I Returns null - terminated character strings, len is an optional out param
const char *get service (int *len=NULL) const ;
const char *get key (int *len =NULL) const ;
const char *get options (int *len=NULL) const ;
bool is_snapshot () const ;
2

} /I namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

41

FACTSET) SEE THE ADVANTAGE

4.2.1 RT_Request Class
#include AFDS/ RT_ Re qu e/snamekpace: FDS
Object Creation, Destruction, and Lifetime

U RT_Request();

RT_Request(const RT_Request &other);

U RT_Request(const char *service, const char *key, bool snapshot_only,
RT_Request::SymbolType symbol_type, const char *options,

HEN e

const char *auth_token);

0 ~RT_Request();

The RT_Request object lifetime is controlled by its creator (usually the appitsatidn The API simply accepts const references to
these objects. In most cases, this class is instantiated on the stack by the application. However, applicationscagatiremtb
destroy these objects in any manner they see fit.

Example

FDS::RT Request request (AFDOSADP) AFDS

Sgd “anud dw Il okd bgd sdr " m QS " QdptdrdR@ai egsl sgygs b daua
the snapshot only flag is set to false (the default value), this request witkimitseream of updates. Toptions and
auth_token parameters are not used and thus paskie_L pointers.

RT_Request Interface

The following setter functions are used to set the properties of the RT_Request class, namely the snapshot flag, keyvice, and
Options and auth_token are not currently used. They should be set to NULL. The set functions will return referenae®itd the
object allowing multiple set function calls to be daisy chained. All strings passed into the set functions shqulilcithenulk
terminated.

RT_Request& set_snapshot(bool snapshot_only)
RT_Request& set_service(const char *service)
RT_Request& set_key(const char *key)
RT_Request& set_options(const char *options)

[et et B ent-B e

The following getter functions are used to querydinegent properties of the RT_Request class. The get functions return a null
terminated string. The lifetime of this returned pointer expires whenever angarst member function is called (like a set
function), or the object is destroyed. The lendtthe string can be optionally returned if the user passes in a valid pointer to an
integer. If the user does not need the length of the string, the user is allowed to pass in NULL.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

42

FACTSET) SEE THE ADVANTAGE

0 const char *get_service(int *len = NULL) — returns the service as a null-terminated string.
0 const char *get_key(int *len = NULL) —returns the key as a null-terminated string.
0 const char *get_options(int *len = NULL) — returns the options string as a null-terminated string.
0 bool is_snapshot() —returns true if the request is for a snapshot (i.e., the stream closes on first message).
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

43

FACTSET) SEE THE ADVANTAGE

4.3 FID Fields and Messages

TheRT_Message class is the class which represents all messages in the system. The APIRIElikdessage references to
client callback routines. This class contanfiermation applicable to all messages. For example, messages will have a key, message
flags, message state, and may also have associated permission information and/or an error condition. Messages also contain a

collection of RT_FidFields.

4.3.1 FID Fields

A FID field is data that is identified by an integer. The data is opaque (i.e., binary data with a size), but in nfost eases 0 g h ms

ASCI| characters.

x FID data values are typically NOT nttBrminated.

!/ include fil e:

namespace FDS {

struct RT_Field

{
const char *ptr ;
int size ;
std::string to_string ()
int to_int ()
unsigned int to_uint ()
double to_double ()
inté4_t to_int64() const;
uinté4 t to_uint64() const;
operator bool ()
bool empty ()

h

struct RT_FidField

{
int fid ;
RT_Field data ;

2

} /I namespace

AFD&Y RTAFD /I RT hi dFi el d. ho

const;
const;
const;
const;

const;
const;

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

FactSet Research Systems Inc. | www.factset.com

44

FACTSET) SEE THE ADVANTAGE

RT_Field and RT_FidField Interface

U RT_Field:ptr - points to the actual data value. The data is NOT null-terminated.
U RT_Field::size - is the size of the actual data field in bytes. The data size cannot exceed 255 bytes.
U0 RT_Field::to_string() - returns a std::string representation of the data.
U RT_Field::to_int() - returns a signed integer representation of data.
0 RT_Field::to_uint() - returns an unsigned integer representation.
0 RT_Field::to_double() - returns a double representation.
0 RT_Field::ito_int64() - returns a signed 64 bit integer representation
0 RT_Field::to_uint64() - returns an unsigned 64 bit integer representation
U RT_Field::empty() - returns true if the ptr is null or the size of the data is zero.
U0 RT_Field::bool() - allows applications to use RT_Field’s inside boolean expressions. This expression will return true if the
ptris NOT null (meaning that the FID exists)
U0 RT_FidField::fid - is the numeric field identifier.
U0 RT_FidField::data - represents the data for this field identifier.
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

45

FACTSET) SEE THE ADVANTAGE

4.3.2 Messages

/'l include fi | RT _MessadgeDIsd

namespace FDS {

class RT_Message // FDS namespace

{
/I get functions return a null - terminated string, len is an optional out param
const char *get_key (int *key_len = NULL) const ;
const char *get stale reason (int *rsn_len = NULL) const ;
const char *get _error_description (int *desc_len = NULL) const ;
rt_errno get_error () const ;
bool is _response () const ;
bool is_update () const ;
bool is_stale () const ;
bool is_error () const ;
bool is_closed () const ;
/I Doesn't return a null - terminated pointer, MUST pass in a pointer for len
const char *get (int fid, int “*val_len) const ;
RT_Field get (int fid) const ;
class const_iterator ; Il Acts like a pointer to a RT_FidField
const_iterator begin () const ;
const_iterator end() const ;
/I Doesn't return a null - terminated pointer, MUST pass in a pointer for len
const char *get by idx (int idx, int *fid, int *val len) const ;
RT_FidField get by idx (int idx) const ;
int count () const ;
bool exists (int fid) const ;
bool empty () const ;
/I value must be null - terminated string
rt_errno set (int fid, const char *value);
/I value does not have to be null - terminated, but if so
/I value_len should not include NULL termination in its calculation
rt_errno set (int fid, const char *value, int value_len);

rt_errno set (int fid, const RT_Field &fld);
rt_errno set (const RT_FidField &fld);

/I value must be null - terminated string

rt_errno append (int fid, const char *value);

/I value does not have to be null - terminated, but if so

/I value_len should not include NULL termination in its calculation

rt_errno append (int fid, const char *value, int val_len);
rt_errno append (int fid, const RT_Field &fld);

rt_errno append (const RT_FidField &fld);

void erase (int fid); /I erases a fid

void clear (); /Il erases all fids

/I methods to marshal/un marshal to and from a binary stream

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

46

FACTSET) SEE THE ADVANTAGE

unsigned int size () const ;

rt_errno serialize (void *dest, unsigned int *bytes_written) const ;
rt_errno deserialize (const void *source, unsigned int src_size); }
} // namespace

4.3.3 RT_Message Class
#include A FDS/ RT_ Me s s a/gnamebpace: FDS

Object Crea tion, Destruction, and Lifetim

TheRT_Message class is can be created by applications. In this case, the lifetime of these objects are strictly managed by the
creator. Typically, applications will be givesinters to RT_Message objects as callback parameters. These objects are owned by tt
API and their lifetime is valid during the callback routine only. If applications wish to extend the lifetime, they sliettbpies of

the object using the copy cxtructor provided.

RT_Message Interface

The following methods allow the application to query various pieces of information. As with the RT_Request methods the get
methods will return a nuiterminated string.The lifetime of this returned pointer expingBenever any noftonst member function

is called (like a set function), or the object is destroyed. The length of the string can be optionally returned alssasser a

valid pointer to an integer. If the user does not need the length of thg, gtve user is allowed to pass in NULL.

U const char *get_key(int *key_len = NULL) - returns a null-terminated string.

U const char *get_stale_reason(int *rsn_len = NULL) - returns a null-terminated string. Should be used if
the message is stale (i.e. is_stale() returns true).

U rt_errno get_error() - returns the error code of an error message. For a complete list of possible errors see Appendix
B.

U const char *get_error_description(int *descr_len = NULL) - returns a null-terminated string.

0 bool is_stale() - returns true for stale messages.

U boolis_error() - returns true for error messages.

U boolis_closed() - returns true when the stream is closed.

U bool is_response() - returns true for the initial message.

U bool is_update() - returns true if the message is an update to an initial message (opposite of is_response()).

The following methods allow for manipulation of the FID field data:

U rt_errno set(int fid, const char *value) — sets the field with the value specified. Value should be null-
terminated.

0 rt_errno set(int fid, const char *value, int value_len) — sets the fid with the value specified. Value
does not have to be null-terminated. value_len should be the length of the value minus any null-termination.

0 rt_errno set(int fid, const RT_Field &field) — sets the fid passed in to the data from field.

0 rt_errno set(const RT_FidField &field) — sets the field specified in RT_FidField in the message.

Theset' £ hethods listed above set data values identified by the integer (field identifier or FID). These methods will overwrite
existing values. If the FIDs do not exist, the fields are appended to the message. The maximum value size allovted.is 255 by
Longer values will be truncated. The maximum number of fields in a message is also 255. These functions will return Rif_E_LIMI
the maximum of 255 fields has been reached.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

47

FACTSET) SEE THE ADVANTAGE

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

48

FACTSET) SEE THE ADVANTAGE

X

When using set with either an RT_Field or const char *value, the APl uses mejnapygpposed to memmove().

Memcpy() does not handle overlapping regions of memory, so it is important that applications avoid using a pointer
from a call to get(int fid), where the fid being set() is the same as the one returned from get().

T

i

Theappend' £ ifiethods listed above will add the fields to the end of the message. There is no checking to see if the field exists

rt_errno appe nd(int fid, const char *value) —appends the field with the value specified to the message.
Value should be null-terminated.

rt_errno append(int fid, const char *value, int value_len) — appends the fid with value to the
message. Value does not have to be null-terminated. value_len should be the length of the value minus any null-termination.
rt_errno append(int fid, const RT_Field &field) — appends the fid with the value specified in field to the
message.

rt_errno append(const RT_FidField &field) —appends the field specified in RT_FidField to the message

before appending the data, thereftihhese functions do allow duplicdield identifiers to be appended.

The get functions allow the user to extract fields identified by an integer FID.

const char *get(int fid, int *value_len) - returns the pointer to the field data. The data is NOT null-
terminated. This function will return the size of the data in the area pointed by value_size. Applications must specify a valid
pointer. If the FID is not found, NULL is returned with a value_size of zero.

X

Hs hr onrrhakd enq fds' £(sn gdstthatthefieldis pkesest, bat thdvdata|d q +
is empty. In this case, it is invalid to deeference the pointer returned.

RT_Field get(int fid) - returns an RT_Field struct.

Methods to query field information:

cC:

bool empty() - returns true if there are no fids in the message.

bool exists(int fid) - returns true if the FID exists in the message.

int count() - returns the number of fids in the message.

const char *get_by_idx(int idx, int *fid, int *val_len) - gets the field at a particular index. The
index is zero-based to a maximum value of the count() — 1.

RT_FidField get_by_idx(int idx) - same as the previous get_by_idx(...), but the value is returned via the RT FidField
strucuture (see section 4.3.1 FID Fielfor more information).

Methods to manipulate field information:

i
i

void erase(int fid) - erases the FID from the message.
void clear() - clears all the FIDs from the message.

Methods to support stl style iteration:

U const_iterator begin() - returns the beginning iterator.
U const_iterator end() - returns the end iterator.
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

49

a

FACTSET) SEE THE ADVANTAGE

A const_iteratoracts like a pointer to @&onstRT_FidField class

Example:

RT_Message msg;
msg.set(1, "test", 4);
msg.set(2, "'me", 2);

for (RT_Message::const_iterator it = msg.begin(); it I= msg.end(); ++it)
cout << "Field id=" << it - >fid
<< "val="<< it - >data.to_string() << endl;

The following methods support marshalling and unmarshalling of RT_Message objects to anbifieoynsiream:

U unsigned int size() - returns the size needed to serialize the representation to bytes.

U rt_errno serialize(void *destination, unsigned int *bytes_written) - serializes the state to the
byte stream pointed to by destination. The number of bytes written will be copied to the area pointed to by bytes_written. This
function will always return RT_NO_ERROR.

U rt_errno deserialize(const void *source_data, unsigned int src_size) - deserializes the byte
stream from the area pointed to by source_data of src_size. The function can return RT_E_INVAL if an argument is invalid or
RT_E_PROTOCOL if there is a problem with the byte stream.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

50

FACTSET) SEE THE ADVANTAGE

4.4 Records

The API supports internal caching of certain types of records. This allows applications to reduceith@bstate needed to keep
up-to-date. Th&RT_Record is the class which represents all records in the system.

/'l include fiS/eRT_ Riegchor d. ho
namespace FDS {
class RT_Record
{
/I Doesn't return a null - terminated string
/I MUST pass in a pointer for len
const char *get key (int *key_size) const ;
RT_Field get_key () const ;
/I Doesn't return a null - terminated pointer
/I MUST pass in a pointer for len
const char *get (int fid, int *value_size) const ;
RT_Field get (int fid) const ;
class const_iterator ; Il Acts like a pointer to an RT_FidField
const_iterator begin () const ;
const_iterator end() const ;
/I Doesn't return a null - terminated pointer
/I MUST pass in a pointer for len
const char *get by idx (int idx, int *fid, int *val_size) const ;
RT_FidField get by idx (int idx) const ;
int count () const ;
bool exists (int fid) const ;
bool empty () const ;
bool is_stale () const ;
bool is_permissioned () const ;
/I Doesn't return a null - terminated pointer
/I MUST pass in a pointer for len
const char *get permissions (int *perms_size) const ;
RT_Field get_permissions () const ;
/I Doesn't return a null - terminated pointer
/I MUST pass in a pointer for len
const char *get stale reason (int *rsn_size) const ;
RT_Field get_stale_reason 0 const ;
2
} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

51

FACTSET) SEE THE ADVANTAGE

4.4.1 RT_Record Class

#include “FDS/RT_Record.h” // namespace: FDS

TheRT_Record class is given to the application as a callback parameter. Applications can use this interface to gain access to fiel
that have not changed and thus may not be in the RT_IMesdgject. This object represents the current state of the record after the
current update message has been applied.

Object Creation, Destruction, and Lifetime

Applications should not create RT_Record classes. This object is passed as a callback pahentiéééme of this parameter is
valid during the callback routine only.

RT_Record Interface

The following methods allow the application to query various pieces of information. Two variants are available. &terfgst r
RT_Field structure, and tleenst char * variant will return the data and size.

U RT_Field get_key() —returns the key of the record in a RT_Field structure.
U const char *get_key(int *key_size) —returns the actual pointer and size. Applications must pass in a a valid
pointer for key_size.

U RT_Field get_permissions() —returns the permissions in a RT_Field structure.
U const char *get_permissions(int *perms_size) — returns the actual pointer and size. Applications must
pass in a a valid pointer for perms_size.

U RT_Field get_stale_reason() —returns the stale description in a RT_Field structure.
U const char *get_stale_reason(int *rsn_size) —returns the actual pointer and size. Applications must pass
in a a valid pointer for rsn_size.

U boolis_stale() - returns true for stale records.
U boolis_permissioned() - returns true if the record has permissions set.

The get functions allow the user to extract fields identified by an integer fid.

U const char *get(int fid, int *value _Size) - returns the pointer to the field data. The data is NOT null-
terminated. This function will return the size of the data in the area pointed to by value_size. Applications must specify a valid
pointer. If the FID is not found, NULL is returned with a value_size set to zero.

x Hs hr onrrhakd enqg f ds' £(sigen Thiganeanstimat the field islpresent, but thendata g + a
is empty. In this case, it is invalid to deeference the pointer returned.

0 RT_Field get(int fid) —returns an RT_Field struct (see section 4.3.1 FID Fielfor more information).

U const char *get_by_idx(int idx, int *fid, int *val_size) — gets the field at a particular index. The
index is zero-based to a maximum value of the count() — 1.

0 RT_FidField get by idx(int idx) — same as the previous get_by_idx(...), but the value is returned via the

RT FidField structure.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

52

FACTSET) SEE THE ADVANTAGE

Methods to query field information:

U bool empty() - returns true if there are no fids in the record.
U bool exists(int fid) - returns true if the FID exists in the record.
U int count() - returns the number of fids in the record.

Methods to support stl style iteration:

0 const_iterator begin() - returns the beginning iterator.
0 const_iterator end() - returns the end iterator.

A const_iteratoracts like a pointer to a RT_FidField claghe followingexample code uses the iterator concept to print the Message
and Record fields:

void on_message(int tag, const RT_Message *msg,
const RT_Record *rec, void *closure)
{
cout << "Message Fields:" << endl;
for (RT_Message::const_iterator it(msg - >hegin()); it '= msg - >end(); ++it)
cout<<" \tField id=" <<t - >fid
<<"val=" <<t - >data.to_string() << endl;
cout << "Record Fields:" << endl;
for (RT_Record::const_iterator it(rec - >begin();it!=r ec- >end(); ++it)
cout<<" \tField id=" <<t - >fid
<<"val="<<it - >data.to_string() << endl;
}
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

53

FACTSET) SEE THE ADVANTAGE

4 5 Field Translation

Field ids are simple integers. However, these integers are typically managed by an associateddaabémname. The
RT_FieldMap class assists in translag names to ids and vice versa.

!/ i ude f

namespace FDS {

necl

class RT_FieldMap
{
static const int
static const int

enum FieldType {

RT_NullType =0,
RT_CharType =1,
RT_StringType =2,
RT_IntegerType = 3,
RT_PriceType =4,
RT_DecimalType =5,
RT_Reserved =6,
RT_Enumeration = 7,

RT_DateType =38,
RT _TimeType =9
h
/l The
static RT_FieldMap *
static void

e !

MAX_FIELD_NAME_SIZE
MAX_FIELD_NAME_DESCR 256;

AFDS/ RT_Fi el dMap. ho

=128;

factory methods allow the only way to create a RT_FieldMap object
create (const
destroy (RT_FieldMap *map);

char *filename, bool

/I set_default will return the old default. Note: get_default
/I a const pointer, thus allowing the default map to be thread

static RT_FieldMap *
static const RT_FieldMap *
rt_errno append (const char
const char *get_name (int

set_default
get_default ();

(const

*filename);

const char *default_if_not_found ="")

/I All get_id(...)'s will return O if fid not found

int get id (const
int get_id (const

/I get_t
FieldType

unsigned int count () const ;
const char *get_name_by idx
int get_id_by idx
FieldType get_type_ by idx

} // namespace

char
char

*name)
*name, FieldType *type)

const ;
const ;

ype() will return RT_NullType if fid is not found

get type (int const ;

(unsigned int idx) const ;
(unsigned int idx) const ;
(unsigned int idx) const ;

make_default=

true);

returns
- safe.

RT_FieldMap *new_default_map);

const ;

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

54

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

4.5.1 RT_FieldMap Class

#include “FDS/RT_FieldMap.h” /I namespace: FDS

TheRT_FieldMap class is available to applications for translating names to field ids anderg® Translating FIDs to names
assists with debugging messages and records and also allows for-hemdable configuration files. In essence, this class allows
names to béranslated to numbers at rutime. If names are only required at compile time, this class is not needed, and instead the
"ookhb> shnm b m itrs hmbktcd sgd ®ECR. gs”“ehdkcr-g gd” cdq

Object Creation, Destruction, and Lifetime

Applications cancreateapS* EhdkcL o bk rr trhmf sgd rs shb etmbshnm QS*
object based on the filename specified as the parameter to create(). The file should adhere to the correct xml spetification e h
file (see théactSet Data Service Specification DocuinestFieldMap file is supplied in the toolkit. The location is

®dsb. gs*"ehdkcr - wl k- @ookhb shnmr sg°s vhrg sn tshkhyd m’

Once the object is created, ibisned by the application. Applications may destroy the object anytime using the static member
function RT_FieldMap::destroy(). It is recommended that applications create an RT_FieldMap object during startug and let th
operating system clean up the 8% memory resources during program shutdown.

RT_FieldMap Interface

The maximum field name size is given by the consMAX_FIELD_ NAME_SIZE. In addition to each field having a name and
integer identifier, every field is associated with an applicadiefined data type. Since every field value is simply a pointer to some
opaque data along with the size of the data, applications need to know the type of the field as well. The enumeratienliBteldT
the possible field types. It is important to ntitat once a type is published for a specific field identifier, it will NEVER be changed.
Applications may make assumptions about the published type of the field at compile time. For a more detailed decriptiachabou
type, see th&actSet Data SendSpecification Document

enum FieldType {

RT_NullType =0, /I set for invalid field ids

RT_CharType =1, /I value is a single character

RT_StringType =2, /I value is a string

RT_IntegerType =3, /I value is an integer (no units)

RT_PriceType =4, /I value is a price (has units)

RT_DecimalType =5, /I value is a general decimal (no units)
RT_Enumeration =7, /[value is an Integer Enumeration

RT_DateType =8, // value follows the FactSet date specification
RT_TimeType =9 /l value follows the FactSet time specification

U static RT_FieldMap *create(const char *file, bool make_default=true);
U static void destroy(RT_FieldMap *map);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

55

FACTSET) SEE THE ADVANTAGE

The above functions can create and desRdy FieldMapbjects. To create &I _FieldMapbject an xml file must be passed as an
argument. The create() functions will return NULL if the file could not be opened. The default argomakat défaults set to

true, which informs the create() function to remember the pointer of the newltedré&ldMap object (using the
set_default_field_map() method, see below). To destroy a FieldMap object, pass the pointer to the object to the
RT_FieldMap::destroy() method. This function will also make sure the the internal default map file isslwalied a

U static RT_FieldMap *set_default(const RT_FieldMap *map);
U static const RT_FieldMap *get_default();

The above methods get and set the default field map object. This object is used internally within the API for pringjeg toessa
std::ostream . By no means is it necessary to stomefaultfield map file, but having one makée API interfaces simpler. The
API will handle the caséthe defaulfield map isdestroyed, by setting the defafild map to NULL.

U rt_errno append(const char *fil ename);

The” oo d mc ' £ @llow acsreemt field map to append the fiefdsm agiven filename. This is useful if there aretiplé xml
files to load. Thifnctionis anonstaticmember function

U const char *get_name(int fid, const char *default i f_not found = A0);

Sgd fds”"m I d"£(etmbshnm " kknvr sgd “~ookhb > shnm smll-fds sgc¢
terminated string. If the field id is not found, the method will return the second arguméniltdé not_found (which defaults to

the empty string). If applications want a return value of NULL in this case, they should pass in NULL as the secontbaigiment
fds*"m I d"£(| dsgnc-

U int get_id(const char *name, FieldType *type = NULL);
U0 FieldType get_type(int fid);

Sgd fds~hc'" £(I dsgnc gdstgmr sgd hmsdf dq Hennatedskingdlg f hudm
addition, if a valid pointer is passed as the second argument, this mdéthode gdst gqm sgd ehdkc sxod-
return the field type given its identifer. All these functions will return O (an invalid FID and type) if the fieldtifbisndo

U unsigned int count() - returns the number of fields in the map.

U const char *get_name_by_idx(unsigned int index) - returns the name located at index (zero-based)
U intget_id_by idx(unsigned int index) - returns the field id located at index (zero-based).

U FieldType get_type_by_idx(unsigned int index) - returns the field type located at index (zero-based).

The above functions are used to support iteration of all the fields within the FieldMap.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

56

FACTSET) SEE THE ADVANTAGE

4.6 RT_Consumer

The RT_Consumer class manages the connection to the FactSet Data Server. It is the class used to condatz, caqaest
subscriptions, manage the event loop, and finally disconnect. This class is the heart of the Faditbet R€4l

/'/ include file: AFDS/ RT _Consumer . ho

namespace FDS {

class RT_Consumer

{
typedef void (* CtrICB)(bool is_connected,
const class RT_Message *msg, void *closure);
typedef void (* MesgCB)(int tag, const class RT_Message *msg,
const class RT_Record *rec, void *closure);
void set_connection_ctrl_cb (RT_Consumer::CtrlCB cb, void *closure,
void **old_closure = NULL);
const char *get connection_info (size_t *string_len = NULL);
rt_errno set_connection_info (const char *connection_string_uri);
rt_errno set_connection_info (const char *host _por t,
const char *user, const char *passwd);
rt_errno connect (bool async _connect = false);
rt_errno disconnect (bool keep_registration = false);
bool is_connected () const ;
const char *get connect ed _host () const ;
rt_errno workstation_connect (const char *user, const char *passwd= "',
bool async_connect = false);
size_t get_services (class RT_Message *msg) const ;
rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb,
void *closure, int *tag);
rt_errno cancel (int tag, void **closure =NULL);
rt_errno get_notify_socket (int *notify_socket) const ;
rt_errno create_mswin_dispatch_window 0;
rt_errno destroy_mswin_dispatch_window 0;
rt_errno dispatch (int max_wait_time_in_ms = 0);
rt_errno lock () const ;
rt_errno unlock () const ;
static RT_Consumer & get_default ();
%

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

57

FACTSET) SEE THE ADVANTAGE

4.6.1 RT_Consumer Class

#include “FDS/RT_Consumer.h” /l namespace: FDS

TheRT_Consumer class manages the connection to the FactSet Data SApicationswill use this object to open a connection
to the FactSet Data Server and request information. This class will manage all the subscriptions orttehbalblafation.

Object Creation, Destruction, and Lifetime

Applications create and control the lifetime of RT_Consumer objects with the exception of the default RT_Consumee object. Th
lifetime of this default object is controlled by the API. Apminatshould not destroy the default instance. This instance is
accessible via the RT_Consumer::get_default() static method. Applications that need only a single RT_Consumer sheuld utilize
default instance or use the FDF class insteadsgsgmn4.7 The FDF Class Interfafor more information).

RT_Consumer Interface

Defining the callback signatures

The application can receive two types of notifications via callbacks. This first type is a control notification:

0 typedef void (*CtrICB)(bool is_connected, const RT_Message *msg, void *closure);

Applications that want to receive control messages should define a function with the above signature to receive the€@mrvehts.
notifications will typically indicate events suas Connected, Disconnected, Service Attachment, and so on. For a complete list of
control messages, see the Appendix located at the end of this document. The first paiaroeterected), indicates if the

current connection is valid. The second R@s$dge parameter has information such as the type of control naotification. The final
parameter is the applicatiesefined closure which was passed in when the callback was setup.

The second type of notification is for application messages to items exfjuest

0 typedef void (*MesgCB)(int tag, const class RT_Message *msg, const RT_Record
*rec, void *closure)

Applications should define the above function signature to receive messages for requests. The parameters are as follows:

1 inttag - is the tag that was returned when the orginal request was made. It is the resource that identifies this stream, and is
needed to cancel the stream.

1 RT_Message *msg - is the actual update (or initial) message from the server. A dynamic open stream will deliver a series of
messages. The initial message will contain all the available fields, and the updates will contain only those fields that need to be
changed.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

58

FACTSET) SEE THE ADVANTAGE

1 RT_Record *rec - is the current cached record associated with the stream. It will contain ALL the fields, and is the current
state of the instrument (i.e., the message has been applied).
1 void *closure - is an application-defined pointer passed in the orginal request.
Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

59

FACTSET) SEE THE ADVANTAGE

Registering for Control Messages

The application can install a single callback to receive cantitifications. To set control notications applications should use the
following:

U void set_connection_ctrl_cb(RT_Consumer::CtrlICB cb, void *closure, void
**old_closure = NULL)

This function will set a control callback. The application should pass interto a function that adheres to the
RT_Consumer::CtrICB signature. The application should also pass in a closure argument (which can be NULL). In addition, the
previous closure argument can be returned.

Control messages are used to dynamically infapplications of various events such as the following:

Removal of a servicet When a service is removed and no longer available for requests, a control meitidagesent to the
application.

Addition of a new service + When a new service has attached @deady to accept new connections a control messdbeen
sent to the application.

TCP connection terminationt When a connection socket is terminated (for any reason), a control message will be sent. The reasc
for termination will be includeth the control message.

TCP connection notification (for asynchronous connectionsi When the application is using asynchronous connections, the API
will deliver a CONNECTED control messpge a successful TCP connect.

For complete details on the type of control messages that can be received, as well how each one should be Ramdledisée
Setting the connection information

The following methods will set the connection information:

rt_errnoset_connection_infalconst char *connection_stringri);

rt_errno set_connection_infa/const char *hostport, const char *useonst char *passwd);

In order to connect to the FactSet Data Server, the application must set the host name (or IP thédpesshjumber, the
username, and the information required to generate thetidmepassword. These items should be passed into the
set_connection_info() methods as parameters. The functions taketeuthinated strings as ingu The following outline
someexamples.

Using OTP
set_connection_info("apistage.df.factset.com", "client”, "AAAA", "5¢706e...", "730332...", "GPath\To\Counterfile", false) +

Sgd @OH vhkk bnmmidbd-ehbsgdsgbnk ®nmhsgdl cde rtdigsn” ongsmen &b
password generated by the key and counter.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

60

FACTSET) SEE THE ADVANTAGE

Using Basic Authentication

rds”bnmmd bckehtmaan@bépmen 'f® - e~ btSgdis -@OMHI vhkk bnmsmdbd-ehbsgdsghnek

ongs ne ®5570 - ¢hent vhkk trd rtrvndgmhked®he” ®-

rds”bnmmd bckehtd &N h ine 8 - #@Be3APIWill cofinect to the host 10.2.4.5 on port 4083fusi s g d tcliedf g-m"°

The password is empty in this case.

set_connection_info(NULL} The API will use the global property RT_CONNECTION from the FDF class. The format of the
RT_CONNECTION string is explainéghipendix D and is identical to that of the previous examples (@ignt@10.2.4.5:4063).

rds*bnmmdbshnm®hmen' ®qdf 9. GJ DX" KNHI@KRAPIwi@Bok foaMProfenyeamed qd . E°

RT_CONNECTION in the Windows registry. The hive location iKY MACHINE, and /Software/FactSet/FDF is the path
within the hive.

rds” “bnmmdbshnm®hmen’' ®e htkiteRAPIail lbok forra mroperty samediRT HCANNECTIGNTIN the file
/etc/connection_info.cfg. The format of this file is givémpendix E.

Hs hr "~ krn onrrhakd sn rds | tkshokd bnmmdbshnm r dlayvmngi$an
example.

r ds ”bnmmd bckeht man@ apistage.fadset.coniclient:aaa@apistage2.factset.com £ When multiple connection
strings are specified, the API will attempt to connect using each connection string, until a successful connectiofitisenade. |
connection is subsequently lost, the API will continue trying toettirg using each connection string.

The set_connection_info() methods will only return an error if the host could not be extracted from the specifiedaginott do
check if the host is valid, or if the host can be translated to an actual IP addrgissimply store the connection information for
later use. The connect() method will later use this information to resolve the hostname and port before attemptingdifendonne
the FactSet Data Server.

Getting the connection information

The folbwing method retrieves the connection information:
const char get_connection_info(size_t *length = NU);L
This method will return a nullerminated string of the forrdSER:PASSWD@HOST:POR® valid pointer for the length is passed

into this functionjt will also return the length of this string (not including the null termination). The validity of the return value
expires upon the nextall to get_connection_info().

x get_connection_info does NOT return the same string passed into set_connection_infbife set_connection_info(|
can take a URI resource. This resource can identify a file, registry location, or the connection string itself. Instead,
get_connection_info() returns the resolved user, password, host, and port information from the set_catioa URI.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

61

‘N

FACTSET) SEE THE ADVANTAGE

Connecting to a FactSet server

0 rt_errno connect(bool async = false);

The connect() function connects the API to a FactSet server over an Internet or WAN connection. The connection indd loyust be s
calling the set_conneciton_infd{nction.

Connecting to a local FactSet workstation

0O rt_errno workstation_connect(const <char *user, const
= false);

The workstation_connect() function connects the API to the FactSet workstation program running on theneatiare. In the

cde tks bnmehftqgq shnm+ sgd trdg o g Il dsdqg rgntkc adSERgd 1t
0123 ("mc sgd o rrvngc rgntkc ad °~ ak’ mj rshehmf - Hs hr mr
workstation_connect() function.

This function is only supported in Windows and will fail if version 2011.1 of the FactSet workstation is not instadl&a.ctiSét
workstation program is not running, the workstationnoect() function will start it.

Asynchronos vs. synchronous connect calls

By default, connect() and workstation_connect() are synchronous operations, and thus, will block until a valid connection is
established. If the functions return without error, applications can assume thatrtheation is valid. If an error is returned, the
connection attempt has failed. Applications should retry the connect operation at sometime in the future or exit. Although
applications can issue requests before a successful connection, applicatibii3Twik able to call dispatch() (since digyatwill
return RT_E_SHUTDOWN).

Applications that wish to connect asynchronously (i.e.blocking), should explicitly pass in true. When the async parameter is
set to true, the connect functions will retimmediately. If an error is returned, the asynchronous connect hasX&ilétlan
asynchronous connection operation returns without error, the connection is in progress. A control callback will be pwolked u
sucessful or unsuccessful connect.

x If connect() or workstation_connect() return an error, the connection will never get establishefpplications must
issue a successful connect before dispatching any messagekhis behaviour is true for both asynchronous and
synchronous connections.

16 Applications should exit if an async connect(true) operation fails. This is an unrecoverable, serious error.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

62

FACTSET) SEE THE ADVANTAGE

connect() can return the following errors:

Error Description

RT_E_VERSION Returned if the incorrect library is linked at compile time.

RT_E_INVAL Returned if the application did not set the host and port using
set_connection_info().

RT_E_PROTOCOL Returned if the connection is not returning the valid protocol. This may
occur if the application attempts a TCP connect to some unknown server.

RT_E_ACCESS Returned if the username and/or password are invalid.

{System Errno} If the API could not resolve the host name, open the TCP connection, or

create the communication thread a system errno is returned. It is a positive
error number from the native platform.

workstation_connect() can return the following errors:

Error Description

RT_E_VERSION Returned if the incorrect library is linked at compile time.
RT_E_PROTOCOL Returned if the connection is not returning the valid protocol.
RT_E_ACCESS Returned if the username and/or password are invalid.

RT_E_RESOURCE Returned if the APl is unable to communicate with the FactSet workstation.

This can occur if the proper version of the FactSet workstation isn’t installed
on the machine or the APl is unable to start the workstation program.

{System Errno} If the API could not resolve the host name, open the TCP connection, or
create the communication thread a system errno is returned. It is a positive
error number from the native platform.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Disconnecting and querying the connection status and available services

0 rt_errno disconnect(bool keep_registration = false)

Disconnect will tear down the TCP connection to the server. Applications can specify whether the internal subscripti@soshou

be cleaned up. The default is to cancel all the subscriptions when the application isscesnectg. If the application wishes to
jddo sgd rtarbghoshnmr+ sghr b kk vhkk fdmdqg sd @ingokedd | ¢
during the call to disconnect.

0 bool is_connected() const

is_connected() simphgeturns the status of the connection. It is possible that a network or server condition can cause a TCP
disconnect during normal operation. In this case, the API will attempt to retry the connection every so often. Imratdisely
disconnect all opestreams will receive stale messages. When the connecticaestatgished the open streams will be notified (via
the callback) with the refreshed nstale data.

U const char *get_connected_host() const

get_connected_host()ttens the hostname of theurent connection. If there is no valid connection, it will return NULL. This is most
useful when multiple connection strings are specified in set_connection_info().

U size_tget_services(class RT_Message *msg) const

get_services() retrieves all theailable services.¢.,data sources). The fid FIDS::SERVICE_NAME is appendaugg paeameter
multiple times (one for each service available). The function returns the total number of available services.

Requesting and canceling data streams

U rt_e rrno request(const class RT_Request &req, RT_Consumer::MesgCB cb,
void *closure, int *tag)

U rt_errno cancel(int tag, void **closure = NULL)

request() and cancel() are the main entry points to open and close data streams. Applications call the request nit&h®d to in
stream. The request should be passed in via the RT_Request objsettiseé.2 Requestfor mare information). A callback
parameter and closure argument may also be passed into the API. The final parameter is theteguribis is the resource that
identifies the open stream. Leaking this tag will result in poor performance, and thuatigmishould manage this resource very
carefully. Applications should cancel the tag using the cancel() method. The cancel method also provides a mechaengm to ret
the applicatiordefined closure argument.

The request() function will ALWAYS returreaource tag (even if the method returns an error). For example, if the application
requests a service which is not known, the request will return an error of RT_NO_SERV. However, the request iadjiliqué,in
and when the service is attachedetfequest will be sent. Also, it is possible to issue requests on a disconnected system. In this
case, request() returns RT_E_NO_CONN, however, the request will be sent as soon as the connection is established.

Every call to r equest() will generate a tag. The application is responsible for managing that tag. There are only two
ways to free the resource: using the cancel() method or calling disconnect() with the default parameter.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

64

FACTSET) SEE THE ADVANTAGE

Managing the event loop

Eventually applications will have to return comitto the API so the API can dispatch the message and control callbacks. This is
accomplished by calilghr o™ sbg' £ (

U rt_errno dispatch(int max_wait_time_in_ms = 0)

This method will flush the events from an internal notification queue. If there are no events to dispatipatol () call can
wait for events by specifying the max_wait_time_in_ms parameter. This parameter is the maximttowdiaiein milliseconds A
negative wait time means wait indefinitely.

Thedispatch () method will always return after flushing the notification queue. The application should call this function multiple
times either in a loop or in a system notification procedure. If a wadtis specified, and events are currently in queue, dispatch()
will flush the events (by calling the appropriate callback routines), and then return immediately. Dispatch() waithengaie no
events to be dispatched.

Dispatch can return two errer RT_E_NO_CONN and RT_E_SHUTDOWN. The RT_E_SHUTDOWN is a serious error and may b
to the application deleting the RT_Consumer object, invoking disconnect(), or not handling a TERMINADEmMessage. The
only other reason dispatch can return ET SHUTDOWN is if the application never issued a successful connect() in the first place.

x As long as the application issues a successful connect() and NEVER deletes the underlying RT_Consumer object,
dispatch() will never return RT_E_SHUTDOWN.

TheRT_E_NO_CONN error is returned when the server or network disconnects the TCP connection to the API. This error is not ¢
serious as RT_E_SHUTDOWN. As long as the APl was once connected (via a successful call to connect()), the API will retry the
connecibn every so often. Applications are encouraged to maintain the event loop during this time period, however, they can
disconnect if they choose to do so.

Although many applications can cdispatch () in aloop, many Windows or servgmpe applications viineed to manage their
own event loop. This is usually accomplished by using the Microsoft Windows event loop and/or a select system call loop. Th
following functions assist these types of applications with integration in both Windows and Select Loops.

U rt_errno get_notify_socket(int *notify _socket)
U rt_errno create_mswin_dispatch_window()
U rt_errno destroy_mswin_dispatch_window()

Theget _notify_socket() call returns an active socket descriptor that will become-ready when there are events to
dispatd. Applications will need to add this descriptor to the select loop, andigzdtch () when this descriptor is reacady.
Thedispatch () will take care of turning the off the reaeady indicator for the next call to select.

17 A TERMINATE control message is only given when an application issues an asynchronous connect, and the server failed to authenticate based on the user credentials given
in set_connection_info().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

65

FACTSET) SEE THE ADVANTAGE

This function can also hesed by UNIX or Windows clients. Windows clients can then use this file descriptor as an argument to
WSAAsyncSelect(). This Windows system call will deliver a Windows message basedemdhef a socket descriptor.

Although Windows clients can uget_notify _socket (), it is recommended that applications use the
create_mswin_dispatch_window() method. This convenience function will set up the WSAAsyncSelect on a hidden
window that is created within the API. This window will be created in the cooftété thread that calls
create_mswin_dispatch_window()

The thread that calls create_mswin_dispatch_window should be a Microsoft GUI thread, and therefore must have a GUI
Event Loop.

Once this call returns, all the callback routines will be called witigrwindows GUI Event Loop. No catlispatch () is
necessary. Furthermore, the callback routines will be called by the same thread that called
create_mswin_dispatch_window() . Thedestroy_mswin_dispatch_window() will destroy the hidden window.
These outines are only applicable for Windows applications. These functions witi RTu E_INVAL for Unix clients.

Locking/Unlocking

Since the RT_Consumer object is threafg and invokes applicatiatefined callbacks, there is a potential for deadlock. For
complete details on this scenario, see seclibrim hreading. In order to prevent deadlocks, applicatiomsy need to explidit lock
the RT_Consumer object.

U rt_errno lock() - locks the RT_Consumer object.
U rt_errno unlock() - unlocks the RT_Consumer object.

Applications can issue multiple calls to lock() recursively, however, each call to lock() must kel mptelith a call to unlock().
Currently, these functions can never fail (i.e., they will always return RT_NO_ERROR).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

66

FACTSET) SEE THE ADVANTAGE

4.7 The FDF Class Interface

Since most applications will only need a single RT_Consumer, the class FDF is created as a conveni¥ocecalassmply call the
static methods within the FDF class to get the required functionality and therefore, do not have to create and manage an
RT_Consumer object.

/'l include file: AFDS/ rt _api.ho
class FDF
{
/I Logging functions
static rt_errno log_open (const char *file, bool append = false);
static void log_close ();
static RT_LogLevel log level (RT_LogLevel new_level);
static size t log_set max (size_t new_max_limit);
static void log (RT_LogLevel severity, const char *msg, size t size,
const char *ile, int line);

/I Property Management (for Configuration).
static const size .t MAX_PROPERTY_SIZE= 256; Il including NULL termination

static size t get _property (const char *name, char *dest,
const char *def val = NULL);

static void set_property (const char *name, const char *value);
static rt_errno load_properties (const char *uri, bool append= false);
/I Methods that call the default RT_Consumer
static void set_connection_ctrl_cb (RT_Consumer::CtrlCB cb,

void *closure, void **old_closure = NULL);
static const char *get _connection_info (size_t *dest_sz = NULL);
static rt_errno set_connection_info (const char *connection_string);
static rt_errno set_connection_info (const char *host_port,

const char *user,
const char *passwd);

static rt_errno connect (bool async _connect = false);
static rt_errno disconnect (bool keep_registrations = false);
static bool is_connected ();

static const char *get connect ed_host () const ;

static rt_errno workstation_connect (const char *user, const char *passwd= "',
bool async_connect = false);

static rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb,
void *closure, int *tag);

static rt_errno cancel (int tag, void **closure =NULL);

static rt_errno dispatch (int max_wait_time_in_ms = 0);

static rt_errno lock ();

static rt_errno unlock ();

static size t get_services (RT_Message *msg);

static rt_errno get_notify_socket (int *socket);

static rt_errno cr eate_mswin_dispatch_window 0;

static rt_errno destroy_mswin_dispatch_window 0;

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

67

FACTSET) SEE THE ADVANTAGE

4.7.1 FDF Class

#include “FDS/rt_api.h” /I namespace: FDS

The FDF Class is a wrapper around the default object of an RT_Consumer. Applications that need oy aGamgemer should
use this convenience class.

Object Creation, Destruction, and Lifetime

The FDF class is similar to a Singleton except that all the methods are static. Applications can not create instantzEssoffthey
should simply use the siatmethods provided.

FDF Interface:

Methods supported by RT Consumer::get default()

U static void set_connection_ctrl_cb(RT_Consumer::CtrlICB cb,void *closure, void
**old_closure = NULL);

U static rt_errno set_connection_info(const char connect_str);

U static rt_errno set_connection_info(const char *host_port,const char *user, const
char *passwd);

U const char *get_connection_info(size_t *dest_sz = NULL);

static rt_errno connect(bool async = false);

static rt_errno disconnect(bool keep_registration = fals e);
static bool is_connected();

static const char *get_connected_host() const;

[et I et B et B e

0 static rt_errno workstation_connect(const <char *user,
async = false);

U static rt_errno request(const class RT_Request &req, RT_Consumer::MesgCB cb, void
*closure, int *tag);
U static rt_errno cancel(int tag, void **closure = NULL);

0 static rt_errno get_notify_socket(int *notify_socket);

U static rt_errno create_mswin_dispatch_window();

0 static rt_errno destroy_mswin_dispatch_window();

0 static rt_errno dispatch(int max_wait_time_ms = 0);
0 static rt_errno lock();

0 static rt_errno unlock();

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

68

FACTSET) SEE THE ADVANTAGE

The above methods are identical to the RT_Consumer interface mefftaasnly difference is these methods are static functions of
the FDF class. For a complete desion of these methods, seection4.6 RT_Consumer

4.7.2 Logging Within and Outside the API

The API logs errors to standard error (cerr). However, applications can open an actual log file if they desire. mgerfettavds
available from the FDF class assist with application logging.

0 static rt_errno log_open(const char *filename, bool append = false - opens a logfile named
by the parameter filename. If the file exists and the append parameter is set to false, the old file is moved to a filename with a
“.old” extension. All API log messages will now be logged to this file.

U static void log_close() - closes the log file that was previously opened by log_open(). All log messages will now
be directed to standard error.

U static size_t log_set_max(size_t new_limit) - by default the logfile will roll every 4MB. This method
allows the application to change the maximum log size. It returns the old size.

U static RT_LogLevel log_level (RT_LogLevel new_level) - by default all levels are logged. Applications

can change the minimum level that will be logged. For example, a value of FDS::RT_LOG_ALL means that all levels will be logged,
and a value of FDS::RT_LOG_NONE means nothing will be logged. A value of RT_LOG_WARN will log all levels greater than or
equal to RT_LOG_WARN (i.e. WARN, ERROR, and PANIC). The following logging levels are supported:

enum FDS::RT_LogLevel {
RT_LOG_ALL = 0,
RT_LOG_DEBUG = 1,
RT_LOG_INFO = 2,
RT_LOG_WARN = 3,
RT_LOG_ERROR = 4,
RT_LOG_PANIC = 5,
RT_LOG_NONE = 6

U static void log(RT_LogLevel severity, const char *msg, size_t, const char *file,
int line) 18 - This method will allow any message of length size to be logged to the log file. The file and line numbers
should also be specified. Although applications can use this method to log messages to the log file, a more convenient way is to
use the below macros.

The following macros are defined in “FDS/rt_api.h” for application logging:

#define RT_LOG_RAW(msg) /I Logs the raw message (no prepended text)
#define RT_LOG_INFO(msg) /I Logs an Informational message
#define RT_LOG_WARN(msg) /l Logs a warning

#define RT_LOG_ERROR(msg) /l Logs an error

18 When running debug builds using Microsoft Visual Studio, log messages will also be sent to the Output window.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

69

FACTSET) SEE THE ADVANTAGE

#define RT_LOG_PANIC(msg) /I Logs a panic message and aborts the application

Themsg parameter should be a C++ operator<< expression. Example Code:

void on_messagel(int tag, const RT_Message *msg,
const RT_Record *rec, void *closure)

RT_LOG_INFO("Please log this message");
RT_LOG_WARN("Please log this integer: " << tag);
RT_LOG_ERROR("Message: " << *msg);

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

70

FACTSET) SEE THE ADVANTAGE

4.7.3 Configuration Management

@kk “~ookhb sthhmend mhldgs smm®romelshb” shnm rdsshmfr - Eng dw’ 1l o
stored in some configuration file system registry. The API includes functionality to help manage application configuration files.
U size_t get_property(const char *name, char *dest, const char *def_val) — This method call
will look up a property name and fill in “dest “ with the associated value. The maximum size of a property value is
MAX_PROPERTY_SIZRhich is currently set to 256. Therefore, applications can simply declare a buffer on the stack to accept
the property value. If the property is not found, the function will string copy the def_val into the destination pointer. Applications
can set the default value to NULL. In this case, the APl will write a single null-termination to dest. The return value of get_property()

is the length of the property value not including any null-termination character.

U void set_property(const char *name, const char *value) — This will set a property value given by name
to a contents of value. The value parameter must be null-terminated.

U rt_errno load_properties(const char *uri, bool append = false) 1 loads the properties that are
available in the given uri . If append is false, any pre-existing properties are removed. Otherwise, pre-existing parameters will
remain, but may be overwritten. Appendix E explains the URI syntax as well as provides examples for reading a plain text file or
the Windows registry.

Example Code:
if (FDF::load_properties("etc/my_properties.cfg")) {
RT_LOG_ERROR("Unable to open properties file");
exit(3);
}
char buff[FDF::MAX_PROPERTY_SIZE];
RT_Field fld;
fld.ptr = buff;
fld.size = (int)FDF::get_property("MY_PROPERTY_NAME", buff);
cout << "MY_PROPERTY_NAME as string =" << buff << endl;
cout << "MY_PROPERTY_NAME as string =" << fld.to_string() < <endl;
cout << "MY_PROPERTY_NAME as integer =" << fld.to_int() << endl;
Sgd “~anud dw Il okd bncd kn cr °~ oqnodgsx ehkd+ ®dsb. |l x*oqgnc

Properties are written to the destination argument as lateaminated string. If integers or double types are needed, applications

can use the RT_Field class as shown above.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

71

FACTSET) SEE THE ADVANTAGE

Chapter 5 Permission Service

FactSet has permission system used to entitle its terminal users for real time or delayed exchanfye degplayonly-use,this
systemhas been extended to enforce permissioning via third party integrators. By providing user permissidogimagtstusand

anIP addresscheck,gd sghgc o gsx rxrsdl b’ m dmeow bystemEhishsscalelilse- r s d gl
WorkstationEntitled API permission setup.

x Clients who subscribe to the Enterprise DataFeed and manage their own permissions and exchange re
distribution agreements do not need to use the Permission Service.

5.1 Requirements

To use the Workstation Entitled API permission scheveey @eiser needs to haveuaiqueFactSeSerial Number, either linked to a
E bsRds Vngjrs shnm ngq sn °~ E bsRds K tmbg ~bbnt ms-rialE" bsRc
number. Exchange access through the third party terminal will be grémateeld on Serial Number access.

Every subscription to streaming data provided by FactSet contains a permission code. The third party system must match the
permission code witthe permission code contained in the user map of the user requesting the data. If there is a match, data can t
passed on to that user. If there is no match, then the user is not entitled for the data and an error message shdaictle disp

In order forFactSet to comply with its exchange commitments, the third party must follow the instructions of the FactSet permissiol
system FactSet will audit any third party implementation to ensure its permissions are being enforced correctly.

The Permission serviemcapsulates all of the FactSet permission logic in to a simple ALLOW/DENY notification. Third parties must
subscribe, listen, and follow all the permission statuses relayed by the permission service. The permission servicalgenfmates
each individial Factset user. So, the third party system must request and continue to listen to the permission service using the
FactSet USERNAMIERIAL combinatiofor example, XYZCOMPAN2345 is passed to the permission service. Any changes will be
sent via the swice. In addition, the third party must provide an IP address or list of IP addresses. These two sets of information will
be all FactSet needs to make a judgment on whether a user has access to data or is denied.

As a response, the permission service pvibvide two sets of information. One is the login status, represented by a 1 or 0. When the
status is 1, the third party is allowed to send FactSet exchange data to its third party terminals. When the statéaSetno
exchange data may be sentel$econd is the permission map which is only available if the user is logged on. The third party must
| "sbg sgd rsqgd I hmf ¢ s s n pargisbkionthe thdjvidualused. g1 hr r hnm r ds sn

x As mentioned above, the permission service is desigrniedgrovide streaming updates on the status of individua
users. It is not necessary nor desirable to rapidly make new requests to this service in an attempt to discover changes
because they will be streamed to the subscriber automatically.

Nmkx nmd rtarbghoshnm hr “kknvdc eng ° o gshbtk g trdg+ he
rtarbghoshnm Dggqng vhkk ad rdms sn sgd ehqgrs qdffettdir s- Sgt
terminal. The correct behavior will be to allow the new login request and invalidate the original connection.

x FactSet provide utilitiesfor firms that may want to check on the status of an individual user using the permission
service. Because dhe duplication subscriptionbehavior, this wil shut down the indvidual in favor of the utility, which
may not be the desired result.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

72

FACTSET) SEE THE ADVANTAGE

5.1.1 Authenticating with a FactSet Workstation

Theuser can only receive data while being logged into the FactSet wonkstattbe same machine as where the third party
terminal software is running, this will be confirmed by an IP address check and logon status check.

If the third party terminal triedo run with the user not beinipgged into FactSetor logged in on a fferent machine, the third
party terminalwould fail the login test andould not receive any data.

5.1.2 Authenticating with FactSet Launch

FactSet Laundls a web portal where multiple FactSet services can be accessed through a singlasigns gd trdg-r tn
permanent factset.net ID is used to login. The factset.net ID is linked to a FactSet Username and Serial Number aithdndasdu
to dataets and applications.

The Launch utility Activate my Terminal is available in the tools menu in FactSet Launch. The utility ilsgdbkelcical IP address
from the machine where it is run to be used by the permission service. Activate my tasmasalnmended to use through
Chrome

FACTSET LAUNCH WORKSTATION & M MOBILE APPS WEB APPLICATIONS | 3+ (@ -

SUPPORT UTILITIES

FACTSET SUPPORT
A SIMPLIFIED CONNECTION HAS ARRIVED

ONE LOGIN, ONE PLACE. EVERYTHING YOU NEED RIGHT HERE.

TECHNICAL DOCUMENTS

TOOLS

ACTIVATE MY TERMINAL W

The user needs to authenticate through FactSet Launch on the same machine as the third party terminal is being uddxe This wil
confirmed by an IP address check. Once authenticated access with be granted for 1Zthod&shaurs the user needs to renew its
access from launch.factset.com.

If the third party terminals run without the user being authenticated through Launch in the last 12, lavagthenticated on a
different machine, the third party termingdils the login test andvill not receive angtreamingdata.

5.2 Workflow

An overview of the technology and workflow for this service is described below.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

73

https://launch.factset.com/

FACTSET) SEE THE ADVANTAGE

I Step 1: FactSet has a centralized system that manages all its
end users’ permissions, login status and Launch/Workstation
IP address. A user logs into the FactSet terminal/Launch and
the Permission Server is notified.

9 Step 2: This system informs the DataFeed of the users’
current state of permissions, login status and
Launch/Workstation IP address.

9 Step 3: The DataFeed server will check the list of IP
addresses sent to the APl and if the Launch/Workstation IP is
in the list, The DataFeed Server will also ensure the user is
currently logged on, and pass information that the
requirements were met. The Third Party system then has all
the information it needs to permission their terminals.

9 Step 4: If the user is not authenticated/logged into FactSet or

the IP addresses do not match, then the third party system is L':;ﬂ;‘:{f};

not allowed to send exchange data to the third party terminal.
If the user is authenticated/logged in and the IP addresses do
match, then a second layer of permissioning takes place. The
exchange data needs to be matched up with the permission
map of the user by the third party server. If the end user has
the proper permissions, then the exchange data can be

displayed in the third party terminal, which runs on the same machine as the FactSet terminal.

He sgd dmc trdg-r odqgl hrrhnm | >0 cndr
no exchange data will be sent to the terminal.

Example:

User requests FDS-USA

mirsayingothe mser ismot ensitigddandnd d ¢

1
2. An FDS-USA trade message containing permission code 12345 is returned by the DataFeed server
3

Third party confirms that user has 12345 in their permission map
4. Third party allows FDS-USA to be seen by user

Continuation of example:

5. The users’s permission to 12345 is removed
6. FactSet provides notification of user’s change in permission code to third party server

7. Third party server denies user access to FDS-USA

The login informatioppermission mapand IP address checse dynamic. If there is any change, the third party server will be

notified and the new logic should be applied.

5.3 Audit Process

FactSet has a number of tests designedtoessgral s ghqc o qsx hmsdfg sng hr ognodqkx
contained in a separate document available upon request from FactSet. FactSet will need to perform an audit at tsexhird par

officeto ensure compliance.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.
Th

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

5.4 Service and Data Model

The permission service name is FDS_PERM. The request keys to this service should be of the form SERENAMEVIBER
(e.g, FDS12345).

The permission request will return a response with 2 fields. FID 9221 (USER_LOGIN_STATUR) avliloredu 1 signifies the
client is logged in currentlguthenticated and the IP addresses mat@lsignifies that the user is loggednuff authenticated or the
IP addresses do not match.

For FID 9222 (USER_PERMISSIONS), there will be a comnteddédinaf permission codes for the user. When a field exceeds 255

characters, the same 9222 fid is repeated with the new continuation of the permission code list. This continuesstiigil the li
complete.

The IP addresses need to be comma separated and sent through the method:

RT_Request& set_options (const char *options)

/I create a permission service RT_Request for service=FDS_PERM,symbol=USER - SERIAL
RT_Request req("FDS_PERM", "USER - SERIAL");

I attach comma seperated list of IP addresses
reg.set_options(iAl.2.3.4,192.168.0.10) ;

FDF::request(req, on_message, NULL, &tag);

5.4.1. Complete Permission Service Example

#include <string>
#include <iostream>
#include <map>

#include <vector>
#include <winsock2.h>
#include <ws2tcpip.h>
#include "FDS/rt_api.h"
#include "FDS/rt_fields.h"

/I link with Ws2_32.lib, which will be used to get the IP address of the local machine
#pragma comment (lib, "Ws2_32.lib")

using namespace std ;
using namespace FDS

const char *connection_str
const char *target_user_id

"client:secret@api.df.factset.com” ;
"user -id" ;

/I Callback function for user permissions

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

75

FACTSET) SEE THE ADVANTAGE

void on_user_permissions (int tag, const RT Message *msg, const RT_ Record *rec, void
*closure)

if (msg->is_error ()

/I Most likely unknown user

cout << "Error:" << msg- >get_error_description () << endl ;
FDF: cancel (tag);
return ;
}
if (msg->is_closed ()
{
/I User has been deactivated or FactSet detected that user
/I has logged on from a different location.
1
/I Treat this as user has logged off. Subscribe again with
/I updated IP address if necessary.
cout << "Error:" << msg >get_error_description () << end;
FDF: cancel (tag);
return ;
}
const RT_Field login_status = msg- >get (FIDS:: USER_LOGIN_STATUS
if (login_status .empty ()
{
cout << "No FIDS::USER_LOGIN_STATUS field in the permission message: \n" << msg
<< endl ;
return ;
}
if (login_status Ltoint () == 1)

/I User is logged in, get comma separated list of user permissions.
/I May be more than one USER_PERMISSIONS field, so collect them all
cout << "Userislogged in, try to get user permissions” << endl ;

/I Ilterate all the fields in the message for the permission codes
string perm_codes ;

RT_Message:: const_iterator itr
for (itr =msg->begin (); itr !=msg->end(); itr ++)
{
if (itr ->fid == FIDS:: USER_PERMISSIONS
{

perm_codes . append (itr ->data . ptr , itr ->data . size);
perm_codes . append (",");

}

/I Remove the comma from the end of the string
if (! perm_co des. empty ()
perm_codes . erase (perm_codes . end() - 1);

cout << "Permission codes: " << perm_codes << endl ;

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

76

FACTSET) SEE THE ADVANTAGE

} else

{ _
/I User is logged off or IP addresses don't match. Deny access
/I to FactSet data.
1

/I Cancel sub if no longer interested OR leave sub open and this

/I callback will be called if login status changes.

cout << "User is not logged in or IP address doesn't match”
FDFE: cancel (tag);

}

/I return string of comma separated IP addresses of user's PC
void FetchUsersIPAddresses (vector <string >& ip_addresses
{
struct addrinfo * result = NULL
struct addrinfo *ptr = NULL
struct sockaddr_in *sockaddr_ipv4

/I Initialize Winsock
WSADATAwsa_data ;
int ret = WSAStartup (MAKEWORD, 2), &wsa_data);

if (ret = 0)

{
cout << "WSAStartup failed: " << ret << endl ;
return

}

/I Get host name
char hostName[128] = {0}
gethostname (hostName, sizeof (‘hostName));

/I Get all the IP address in this machine
ret = getaddrinfo (hostName, NULL NULL &result);

if (ret = 0)
cout << "getaddrinfo failed with error: " << ret
WSACleanup();
return ;

}

for (ptr =result ; ptr != NULL ptr =ptr ->ai_next)
{

switch (ptr - >ai_family)

{

case AF_UNSPEC
cout << "Unspecified" << endl ;
break ;

case AF_INET:

sockaddr_ipv4 = (struct sockaddr_in *) ptr ->ai_addr
ip_addresses . push_back (inet ntoa (sockaddr_ ipv4

break ;
case AF_INET6:

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.
77

<< endl ;

->sin_addr));

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

/l'If the IP address is IPV6, process here.
break ;

int main(int argc, char* argv)

/Il Connect to FactSet Data Source
FDFE: set _connection_info (connection_str);

const rt_errmo err = FDE: connect ();

if (err)

{
cout << "Connection error: " << err << endl ;
return (int) err ;

}

/I Request user permissions
RT_Request req ("FDS _PERM" target user_id , false);

/IGet the user's IP address and populate into the request
vector <string > ip_addr ;
FetchUsersIPAddresses (ip_addr);

string finalResult ;
if (ip_addr .empty ()X
/I Separate each IP address with comma
finalResult = ip_addr [O];
for (int i=1; i < ip_addr .size (); i++)
finalResult = finalResult + """ + ip_addr [il];

}

cout << "IP address: " << finalResult << endl ;
req . set_options (finalResult .c_str (),

int tag ;
FDF: request (req, on_user_permissions , NULL &tag);

/I Dispatch loop
while (true)
FDF: dispatch (- 1);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

78

FACTSET) SEE THE ADVANTAGE

Chapter 6 Options Greeks Calculation

FactSet provides additional fields that ret@reeks values and Implied Volatilities for Streaming DataFeed users

6.1 Requirements

The Options Greeks Calculations require Version 2.2 of the Exchange DataFeed C++ Toolkit. Any applications thatgsiaorto use v
2.2 of the latest toolkit will need tecompile. Any applications that want to use this new functionality will require a code change and
to recompile.

6.2 New Implied Volatility and Greek Fields?®®

I I I

2613 ANALYTIC_PRICE_RULE Integer This is a flag to tell which price is being used in the analytic
calculations. A value of 1 means that Mid price is used. A value of 2
means that during market hours a Mid price will be used and after
market hours the settlement price will be used.

2614 EXPIRATION_DAYS_TO Integer The number of business days until the option expires

2620 DELTA Decimal The rate of change of option value with respect to changes in the
underlying asset's price.

2621 GAMMA Decimal The rate of change in the delta with respect to the changes in the
underlying asset’s price

2622 VEGA Decimal The sensitivity of the value of the option to the volatility of the
underlying asset

2623 THETA Decimal The sensitivity of the value of the option to the passage of time

2624 RHO Decimal The sensitivity of the value of the option to the risk free interest rate

2630 IMP_VOL Decimal The volatility of the price of the underlying security that is implied by
the market price of the option based on an option pricing model

2631 IMP_VOL_ASK Decimal The volatility of the price of the underlying security that is implied by
the market ask price of the option based on an option pricing model

2632 IMP_VOL_BID Decimal The volatility of the price of the underlying security that is implied by
the market bid price of the option based on an option pricing model

2633 IMP_VOL_CALC_RATE Decimal The calculated value of the interest rate using the option pricing
model

2634 THEO_VALUE Decimal The calculated value of the option using the option pricing model

Please note that all fields except ANALYTIC_PRICE_RULE and EXPIRATION_DAYS_TO will be blank in the in the initial snapsh
message. The values will begin streaming shortly after. The values will be recalculated based on any changes in tlgeagseérlyin
or the option. The values will be sent at a maximum of once every 10 seconds.

¥ For detailed information on how these fields are calculated please see FactSet Online Assistant Page 14933

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

79

FACTSET) SEE THE ADVANTAGE

6.2.1 Sample Data

response key: IBM#A1814C195000 - USA, tag: 1, msg:
T:1 KIIBM#A1814C195000 - USA E:0 Flags:AGB
NumFids = 11 Size = 151
MSG_TYPE[1] Val = U Size=1
DELTA[2620] Val = 0.553972 Size=8
GAMMA[2621] Val = 0.007738 Size=8
VEGA[2622] Val = 0.901767 Size=8
THETA[2623] Val = - 0.020611 Size=9
RHO[2624] Val = 1.200264 Size=8
IMPL_VOL[2630] Val = 22.392416 Size=9
IMPL_VOL_ASK][26 31] Val = 22.697414 Size=9
IMPL_VOL_BID[2632] Val = 22.087504 Size=9
IMPL_VOL_CALC_RATE[2633] Val = 22.392416 Size=9
THEO_VALUE[2634] Val = 20.424996 Size=9

6.3 Risk Free Interest Rates

FactSet uses Sovereign Debt Benchmarks for RisknEeszst Rates. The country will be determined based on the currency of the
option and the period of time will be determined based on the expiration date of the option.

6.4 Setting up Greek Calculations

There are two steps required to turn on the Greelutaions

1. Include new header for Greeks Calculations.
#include "FDS/ OptGreeksFeature.h "
2. Enable Greek Calculation after the connection is made before the option request is sent

FDF::enable(OptGreeksFeature());

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

80

FACTSET) SEE THE ADVANTAGE

6.4.1 Processing a Message Example

#include <iostream> /l'include all system header files

#include "FDS/rt_api.h" /l'include the API header files

#include "FDS/rt_fields.h" /l'include the API fields file

#include "FDS/ OptGreeksFeature.n " //include the OptGreeks header file
using namespace std; /I for convenience

using namespace FDS; /Il for convenience

void on_message(int tag, const RT_Message *msg,
const RT_Record *rec, void *closure)
{

/I if the server closed the stream close our side as well
if (msg- >is_closed()) { FDF::cancel(tag); }

if (msg- >is_error()) {
cout << "Error: " << msg - >get_error_description() << endl;
return ;

}

string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();
string delta = msg- >get(FIDS::DELTA).to_string();

string gamma =msg - >get(FIDS::GAMMA).to_string();

string vega = msg - >get(FIDS::VEGA).to_string();

string theta = msg - >get(FIDS::THETA).to_string();

string rho = msg - >get(FIDS::RHO).to_string();

cout << "Update: " << msg_type << " Delta: " << delta
<<" Gamma: " << gamma <<" Vega:"<<vega
<< " Theta: "<<theta <<" Rho:"<<rho <<endl

}

int main(int argc, char **argv)

{

/I set up connection (see previous code)

FDF:enable (OptGreeksFeature()); Il before an options request
int tag;

RT_Request req("FDS1", " IBM#A1814C195000 - USA);
FDF::request(req, on_message, NULL, &tag);

cout << "made a request for " << req << " tag=" << tag << endl;

/I dispatch messages

while (true)
FDF::dispatch(-1);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

81

FACTSET) SEE THE ADVANTAGE

Chapter 7 Level 2 Data

FactSeprovides market depth in the Exchange DataFeed for Enterprise Streaming DataFeed users. The additional bid and ask
information may be called Level 2, market depth, or ordekldata, depending on the exchange. In this document market depth is
referred to as Level 2 data.

7.1 Requirements

Level 2 functionality in the C++ toolkit requires version 2.5.1 or higher of the Exchange DataFeed C++ Toolkit. Amysatpplicati
are uplated to use version 2.5.1 of the latest toolkit will need to be recompiled. Any applications that are going to use level 2
functionality will require a code change and to recompile.

7.3 Setting up Level 2 Data

There are 2 ways to receive Level 2 data: Bata and Sorted Data. For either type, the ticker requested must be appended with
®9K1 + sghr vhkk rtarbghad sn sgd Kdudk 1 eddc enmgTegd f ht
subscribe to NASDAQ TotalView data itket should be appended with :TV.

Additional FactSet product permissions are needed to consume these data sets. The raw data request will provideaidthe bids
asks for an individual security. The updates will be sent in the order they are receivadtBgt. To access prerecorded canned data
for development efforts use the servikieS_(the available ticker for canned level 2 data is:

SIAC :
FDS
IBM
DIS
JNJ
WMT

NASDAQ :
CSCO
AAPL
INTC
MSFT
AMZN

Sorted Data is identical to raw data, with the exception that every valid Level 2 messiages an additional field indicating the
l drr > fd-r rngsdc onrhshnm 'AHC"HMCDWA0 "~ mc @RJM"HMCDW”O(- ¢
connection is made befthe Level 2 request is sent.

FDF::enable(Level2F eature());

This feature will allow consumers to create a display that has the bids/ask in price order.

7.2 Level 2 Fields
In addition to the currently supported data fields, the following table described the new fields added for the Level £tonten

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

82

FACTSET) SEE THE ADVANTAGE

N N L .

BID_INDEX_1 Integer Sorted Data only: The message’s position in a sorted list of bids.
250 ASK_INDEX_1 Integer Sorted Data only: The message’s position in a sorted list of asks.
520 ORDER_CODE String Order Code
521 MM_STAT_BITMASK String Shows Open/Closed quotes?®
522 MARKET_MECHANISM_TYPE String Used to show the order type as in market order or limit order
523 MARKET_MAKER_ID String Market Maker ID

Not every exchange will populate every new field that has been added. THieldswvill be used with the level 1 fields
BID_1/ASK 1, BID VOL_1/ASK VOL_1, and BID_TIME_1/ASK_TIME_1.

7.4 Processing Level 2 Data

There are a few specific rules for Level 2 messages that need to be followed to maintain an accurate record.

T If a message has the MSG_TYPE “D”, it represents a delete, and the corresponding entry, by ORDER_CODE, is no longer valid.
These must be processed properly to avoid stale date in the Level 2 record. For the Sorted Data functionality, it will no longer be
considered when sorting the list and should be removed accordingly.

9 For Sorted Data, each valid message will come with BID_INDEX_1 and/or ASK_INDEX_1 populated. These indicate the message’s
position in the sorted list of bids and ask respectively. To handle these messages properly, the previous corresponding entry in the
list, by ORDER_CODE, should be removed, and this message should be inserted at the position specified in the INDEX field.

7.4.1 Processing a Message Example

The example codeelowshows one way to jpcess &orted Level tnessage from a callback. The callback funatietks message
type and bid/ask data, at which point any processing of that data can be ldcgddition, it checks to see if the stream was closed,
and if so, it closes the cliesitle stream by canceling the tag.

The server may close the stream at any time. In addition, error messages (like RT_E_NOT_FOUND) will cause the #teeam to set
close/enebf-stream indicator. The example callback handles both of these conditions.

#incl ude <iostream> /l'include all system header files
#include "FDS/rt_api.h" /I include the API header files

#include "FDS/rt_fields.h" /l'include the API fields file

#include "FDS/ Level2 Feature.h " /l include the Level2 header file
using namespace std,; /I for convenience

using namespace FDS; /Il for convenience

20 Only used in Nasdaq Level 2 feed, this is the only level 2 exchange that does not clear the book at the end of the day, quotes are just closed.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

83

FACTSET) SEE THE ADVANTAGE

void on_message(int tag, const RT_Message *msg,
const RT_Record *rec, void *closure)
{
I'if the server closed the stream close our side as well
if (msg- >is_closed()) { FDF::cancel(tag); }
if (msg- >is_error()) {
cout << "Error: " << msg - >get_error_description() << endl;
return ;
}
string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();
bool has_bid = msg- >exists(FIDS::BID_INDEX_1);
bool has_ask = msg - >get(FIDS::ASK_INDEX_1);
if (! msg_type. comp a/r/aanhdeliéedte)medsage }
else {
if (has_bid) { /I handle bid data }
if (has_ask) { /I handle ask data }
}
}
int main(int argc, char **argv)
{
/I set up connection (see previous code)
FDF:enable (Level2Feature ()); 1 before a Level 2 request
int tag;
RT_Request req("FDS1", " FDS USA:L2");
FDF::request(req, on_message, NULL, &tag);
cout << "made a request for " << req << " tag=" << tag << endl;
/I dispatch messages
while (true)
FDF:dispatch(- 1);
}

See the Level2Quote sample utility included in the C++ toolkit for a more complete example, including logic for maiteditiicy s
and ask lists.

NOTEThe maximum number of simultaneous level 2 symbols per connection is limited to 100 symbols.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

84

FACTSET) SEE THE ADVANTAGE

Chapter 8 Utilities

FactSet includes sample utilities with the toolkit located in the sample/API_C++ folder.

8.1 MultiUser

TheMultiUser utility is a stan@lone example program using the FactSet DataFeed C++ API which can help demonstrate how to
connect to the DataFeed with multiple users.

The MultiUser project utilizes multiple RT_Consumers and uses all of them to retrietleedagafiguration file,
MultiUserRequests.txt, shows the format of connection strings and tickers requesiattl lbok something like this:

userlseriall:passwordl@api.df.factset.com £33 GOGUGSA
user2serial2:passwrd2@api.df.factset.com IBWSA

for which the program would connect to the Datafeed as both userl and user2, requesting FDS and GOOG for userl and IBM for
user2.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

85

FACTSET) SEE THE ADVANTAGE

Appendix A: Error values

The rt_errno Enumeration:

Error Number Code Description

{Any positive number} A system error This is the platform-specific error (via GetLastError() or
errno).

-51 RT_E_UNKNOWN Unknown/Serious error.

-52 RT_E_NO_SERV The service is not available for requests.

-53 RT_E_NOT_FOUND A resource or key was not found.

-54 RT_E_RENAME The stream has been renamed. You should close the
current stream.

-55 RT_E_TIMEDOUT The request for a resource or a key has timed out. You can
retry the operation.

-56 RT_E_EXISTS The resource already exists.

-57 RT_E_LIMIT An application-level threshold has been reached.

-58 RT_E_PROTOCOL There is an error on the byte stream during deserialization.

-59 RT_E_INVAL Either the operation is not supported or an argument is
invalid.

-60 RT_E_RESOURCE A system resource is unavailable.

-61 RT_E_NO_CONN The connection to the data server is disconnected.

-62 RT_E_VERSION There is an incompatibility with the library being used and
the compiled application.

-63 RT_E_SHUTDOWN The application has disconnected the API and is attempting
to dispatch messages.

-64 RT_E_ACCESS Permission denied. The user does not have access.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

86

FACTSET) SEE THE ADVANTAGE

Appendix B: Return Values

The following table shasthe possible return values for API methods that return an rt_errno Enumeration.

RT_Message::
get_error

RT_Message::
deserialize

RT_Message::serialize

RT_Message::
append
RT_FieldMap::
append
RT_Consumer/FDF::
set_connection_info

RT_Consumer/FDF::
connect

RT_Consumer/FDF::
disconnect

RT_E_NOT_FOUND

RT_E_ACCESS

RT_E_RENAME
RT_E_TIMEDOUT

RT_E_PROTOCOL
RT_E_INVAL

RT_E_NO_ERROR
RT_E_LIMIT

RT_E_NOT_FOUND
RT_E_INVAL

RT_E_VERSION

RT_E_INVAL

RT_E_ACCESS

RT_E_PROTOCOL

{System Errno}

RT_E_NO_ERROR

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

RT_E_NOT_FOUND means the key was not
found under the given service.

RT_E_ACCESS means that the Consumer does
not have permissions to see the message.

RT_E_RENAME means that the record has been
renamed.

RT_E_TIMEDOUT means that the request for
the record timed out and can be retried.

The byte stream is corrupted.
Invalid argument (pointer is NULL).

This method can never fail.

The maximum field count of 255 per Message has
been reached.

The filename could not be opened.

The host information is missing.

RT_E_VERSION will be returned if the incorrect
library was linked at compile time.

RT_E_INVAL is returned if the user did not set
the host and port using set_connection_info().

RT_E_ACCESS the user name or password is
incorrect.

RT_E_PROTOCOL is returned if the connection
is not returning the valid protocol. This may
occur if the application attempts a TCP connect
to some unknown server.

{System Errno} If the API could not resolve the
host name, open the TCP connection, or create
the communication thread a system errno is
returned. It is a positive error number from the
native platform.

This method can never fail.

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

RT_Consumer/FDF::
request

RT_Consumer/FDF::
cancel
RT_Consumer/FDF::
get_notify_socket

RT_Consumer/FDF::
dispatch

RT_Consumer/FDF::
create_mswin_dispatch_window

RT_Consumer/FDF::
destroy_mswin_
dispatch_window

RT_Consumer/FDF::
lock

RT_Consumer/FDF::
unlock

FDF::log_open

FDF::load_properties

RT_E_NO_SERV

RT_E_NO_CONN

RT_E_INVAL
RT_E_SHUTDOWN

RT_E_SHUTDOWN

RT_E_NO_CONN
RT_E_INVAL

RT_E_SHUTDOWN

RT_E_INVAL

RT_E_NO_ERROR
RT_E_NO_ERROR

RT_E_ACCESS
RT_E_NOT_FOUND

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

88

RT_E_NO_SERV means that the request is
being held until the service is enabled.

RT_E_NO_CONN means that the request is
being held until the connection to the Data
Server is established.

The stream tag is invalid.
The application never issued a call to connect.

RT_E_SHUTDOWN means the application never
issued a call to connect, the application
destroyed the RT_Consumer object, or the
application called disconnect().

RT_E_NO_CONN means the connection to the
Data Server has been lost.

RT_E_INVAL means that the function is being
called in a UNIX environment.

RT_E_SHUTDOWN means that the application
has not called connect().

The function is being called in a UNIX environment.

This method can never fail.
This method can never fail.

Unable to open the logfile.

Unable to open properties registry or file

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Appendix C: Control Messages

The following table shows the possible control messages that can be ddtiviredpplicatiordefined control callback procedure:

Control Type Additional Information

“DISCONNECTED”

“CONNECTED”
“SERVICE_ENABLE"

“SERVICE_DISCONNECT”

“SERVICE_DISABLE”"

“TERMINATE”

The TCP Connection to the data
server is disconnected.

The TCP Connection to the data
server is connected.

New services are now available
for requests.

Services have become stale.
Existing streams will now
transition to stale.

The services are no longer
accepting any new streams.

The FactSet data server is
requesting the application
terminate its connection (i.e.
the application MUST call
disconnect())

The control callback procedure has the following prototype:

The error information can be obtained via the
get_error() method on the message object.
The error will be one of the error values that
connect() can return.

The current active service names are in the Message.
The FID, FIDS::SERVICE_NAME, is used repetitively.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

This is typical when the authentication for an
asynchronous connection has failed. Applications
MUST call disconnect when receiving this message.
If they do not, the API will call disconnect on its
behalf.

U void (*CtrICB)(bool is_connected, const class RT_Message *msg, void *closure);

The is_connecteaboleanparametemwill always indicate the current status of the T@@Rnection to the data server.

The control type is a string that can édracted from the message Keyg.,control_type -msg>get_key()).The enumeration of the
possible control strigsare listed in the table above.

Additional data fields may be present based on the type of control mesBagge fields are located in the RT_Message object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

89

FACTSET) SEE THE ADVANTAGE

Appendix D: Connection Strings and URI’s

Connection Strings

Connection strings allow apgiditions to specify host and authentication information as a single string. The syntax is as follows:
[USER][:PASSWD]OST:PORT

TheHOSTvalue can be either a host name or dotted decimal (e.g., fdshestageidf.factset.com or 10.14.118DSTis a
mandatory parameter.

PORTcan either be an integer or a service name (e.g., fdsserv or 6681). This is an optional parameter and defaults to 6681 if no
specified.

The USER:PASSWD@ part is opfibnbISER is the FactSepplied username, PASSWhis FactSesupplied password.
Examples:

client:aaa@fdshostl d > mr ~t sgdmshb sdient r hmt ~ ©bDrfrdgmhigd ne ®° sn
port 6681.

client @10.2.4.5:4063neans connect to the host at 10.2.4.5 on port 406B8anisername set tdient

Bnmmdbshnm TQH-Tr

Bnmmdbshnm TQH-r "~ gd tmhudqgr k gdrntgbd hcdmshsheimmgbrents. s g’
If a specific protocol is not given, the URI itselfcisrenection string

An application may request the API to look for connection information in a file or a Windows registry. In this caséictt®app
should pass in a valid configuration URI (8eeendixE). If a NULL pointer is passed in as the URI, FDIprgeerty() will be used
to resole the connection information. The following table outlines the property names used for resolution:

Property Name Meaning

RT_CONNECTION Actual Connection string of the form:
[USERI[:PASSWD][@]HOST:PORT]

RT_HOST The hostname of the Data Server format: HOST[:PORT]

RT_USER Username for authentication

RT_PASSWORD Password for authentication

The RT_CONNECTION parameter is queried first followed by RT_HOST, Rid BSERASSWORD. |If present, the RT_HOST,
RT_USER, and RT_PASSWORD will overide any specific values obtained from the RT_CONNECTION parameter.

21 [] indicate optional
22 Although the user and password information is optional in the connection string, the APl must have a user and password in order to authenticate with the FactSet Data
Server.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

90

‘N

FACTSET) SEE THE ADVANTAGE

Appendix E: Configuration Properties

The API supports loading global properties from a file or from thedWm&egistry. This can be done using the global method
FDF:: load_properties(const char *uri, bool append= false);

Loading Properties from the Windows Registry

1T FDF: : 1l oad_properties(ireg:/ HKEY_LOCAL _ MACHdpdMEHe Bgisttyt war e
hive HKEY_LOCAL_MACHINE. The method will also traverse to the Software/FactSet/FDF section and recursively load all the
name/value pairs.

T FDF: : 1l oad_properties(fireg:/ HKEY_LOCAL_MACHI NE| HKEY_CUR
0)- This method performs the same action as the previous example. In addition, after traversing the HKEY_LOCAL_MACHINE

hive, the HKEY_CURRENT_USER hive will be read. Any property names that are duplicated in the HKEY_CURRENT_USER hive will
overwrite the values read in from the HKEY_LOCAL_MACHINE hive.

Example registry hive:

¢ Registry Editor

File Edit \iew Favorites Help

[Classes A Mame Diata
% E?Enus.sfullfltr?ls = {DeFauIt} {value not set)
= ELErmins 'ESE war [ab]RT_COMMECTION client:pswd@api.df Factset . com
@ Ewi;lettwnr RT_HDST api.df.Factset.com
r_EIE .ﬁ.PEw RT_INSTALLATION_DIR C:\Program Files\FackSet\FactSetDataFeediFdsrt-2)
[Dealmaven RT—P":"SSWD psid
=23 [ab]rT_UUsER clignt
[ClientData
—_ T e e - —
< | IS N

My CompukeriHKEY _CURRENT _USERYSoftwareiFactSet\FDF

Based on the example above the following properties will be loaded:

Property Name Value
RT_CONNECTION client@api.df.factset.com
RT_HOST api.df.factset.com
RT_INSTALLATION_DIR C:\FactSet\fdsrt-2-0\
RT_PASSWD pswd

RT_USER client
ClientData/Proper#j1 valuel

Z |f additional subkeys exist within the given registry path (like ClientData in the above example), the property name will include the key followed by a‘/". In the above
example all values in the ClientData section will have a property name “ClientData/{name}”.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

91

FACTSET) SEE THE ADVANTAGE

Loading Properties from a File

By default, the uri string without a specific protocol is a file. Some examples:

T FDF: : 1l oad_properties(fet c+opeys nyaonfigtixtgusing tketretatjve path “etc/”.

T FDF: :l oad_properties(fAfil e: e+seneahepewdnmtxamgle t xt 0)
An example configuration file:

I

/I C++ style comments are used

I

RT_CONNECTION " client@fdshost :6690";

FIELD_MAP_FILE
BASEDIR
SYMBOL_FILE
ClientData::Propertyl =

"etc/rt_fields.xml";

"db/";

"etc/USE_tickers.txt";

"valuel "

Each name/value pair must end in a s@olon. The syntax is described as follows:

{para

meter_ name} =

Syntax rules:

f
1
f
1
f
1

Anything between the /I character sequence and the new-line character is a comment.

fival

ue

n

guotationso;

Parameter names must be a single word (whitespace is not permitted).

Parameter names and values must be separated by the ‘=" character.

All parameter values must be in quotations, and end with a ;" character.

Any amount of whitespace is permitted on either side of the ‘=" delimiter.

Values must be in quotations and should not contain the new line character.

Based on the example above the following properties will bedoade

Property Name
RT_CONNECTION

Value
client@fdshost:6690

FIELD_MAP_FILE

etc/rt_fields.xml

BASEDIR

db/

SYMBOL_FILE

etc/USE_tickers.txt

ClientData::Propertyl

valuel

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

92

FactSet Research Systems Inc. | www.factset.com

FACTSET) SEE THE ADVANTAGE

Appendix F: Document Version History

The following are revisions made since the Version 1.1 revision H

Revisions Sections
Added overview of workstation data source, expanding 11
diagram

Workstation install requirement 2.3.1
Description of the new workstation connect function 3.2

Eliminated the RT_Response and RT_FidResponse classes
and replaced them with one unified RT_Message class

4 All sections we re-arranged to reflect this change.

The following are revisions made since the Version 2.1 revision C

Revisions Sections
Added language to specify workstation_connect() and 3.2

FactSet workstation need to be run using the same user.

Added Chapter on Permissioning Service 51-5.4
Updated Supported Versions of Visual Studio 211-212
Removed Support for Sun 211-212,233
Added Required Ports 6681 and 443 142
Removed Support for Linux 3.2 211
Added Chapter on Greek Options Calculations 6.1-6.4
Added information on IP/Port mappings 142
Added information on Permission Service 5

Added Chapter on Level 2 functionality 7

The following are revisions made since the Version 2.5 revision A

Revisions Sections

Added section on Bulk Subscriptions

3.3

Added information about OTP

3.21

The following are revisions made since the Version 3.0 revision A

Revisions

Added new error code

Sections
4.1.1, Appendix A, Appendix B

Copyright © 2017 FactSet Research Systems Inc. All rights reserved.

FactSet Research Systems Inc. | www.factset.com

