

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

1

FactSet DataFeed API

C++ Programmer’s Manual and Reference
Version 4.0

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

2

Table of Contents

Table of Contents.. 2
Notice .. 5
FactSet Consulting Services ... 5
Document Organization and Audience .. 6
Document Convention .. 6
Trademarks ... 6
Acknowledgements ... 6

Chapter 1 Introduction ... 7
1.1 The FactSet DataFeed API .. 7
1.3 High Level Overview ... 9
1.4 API Core Functionality and Benefits .. 10

1.4.1 Support for Multiple Development Platforms ... 10
1.4.2 TCP/IP Communications ... 11
1.4.3 Security Protocols .. 11
1.4.4 Simplified Data Access .. 11
1.4.5 Request Consistency .. 11
1.4.6 Subscription Management ... 12
1.4.7 Caching .. 12
1.4.8 Logging and Configuration Management .. 12
1.4.9Threading Support .. 12

Chapter 2 Building Applications .. 13
2.1 Toolkit Organization ... 13

2.1.1 Supported Compilers, Operating Systems, and Architectures ... 13
2.1.2 Library Naming Conventions .. 14

2.2 Compiling Applications ... 15
2.2.1 Microsoft Platforms ... 15
2.2.2 Linux Platforms ... 16
2.3 Running Applications ... 16
2.3.1 Windows Systems .. 16
2.3.2 UNIX Systems ... 17

2.4 Versioning ... 17
2.4.1 Version Control ... 17

Chapter 3 Programming with the API .. 18
3.1 Program Setup and Initialization ... 18

3.1.1 Standard Conventions .. 18
3.1.2 Closure Arguments .. 18
3.1.3 Namespaces and Included Files ... 18
3.1.4 The FDS::FDF Class .. 18
3.1.5 A Complete Example ... 19

3.2 Connecting to a Data Source .. 20
3.2.1 Connection Strings... 21
3.2.2 Synchronous Connect Sequence Diagram ... 24
3.2.3 Synchronous Connect Example ... 25
3.2.4 Asynchronous Connect Sequence Diagram ... 26
3.2.5 Asynchronous Connect Example ... 27

3.3 Requests and Cancels ... 28
3.3.1 Opening the Stream ... 28
3.3.2 Closing the Stream ... 28
3.3.3 Tag Ownership and Lifetime ... 29
3.3.4 Dynamic Request ... 29
3.3.5 Static Request .. 30
3.3.6 Bulk Subscriptions ... 30

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

3

3.3.7 Canceling Requests .. 31
3.4 Processing Events ... 32

3.4.1 Normal Dispatching ... 32
3.4.2 Handling Errors ... 32
3.4.3 Integrating with a SelectLoop or XtWindows Loop .. 33
3.4.4 Integrating with a Windows Loop Using WSAAsyncSelect ... 34
3.4.5 Integrating with Windows Using create_mswin_dispatch_window() ... 34

3.5 Processing the Messages .. 35
3.5.1 FID Value Pairs ... 35
3.5.2 Field Identifiers .. 35
3.5.3 Messages .. 35
3.5.4 Records .. 35
3.5.5 Processing a Message Example ... 36

3.6 Threading .. 37
3.6.1 Thread-safe Classes ... 37
3.6.2 Thread-unsafe Classes ... 37
3.6.3 Class-thread-safe.. 37
3.6.4 Read-only Objects ... 37
3.6.5 Threading Issues Using a Callback-driven API ... 37
3.6.6 Avoiding Deadlock .. 38

Chapter 4 API Class Reference .. 40
4.1 API Constants .. 40

4.1.1 Error Codes .. 40
4.1.2 Field Identifiers .. 40

4.2 Requests .. 41
4.2.1 RT_Request Class .. 42

4.3 FID Fields and Messages .. 44
4.3.1 FID Fields .. 44
4.3.2 Messages .. 46
4.3.3 RT_Message Class... 47

4.4 Records.. 51
4.4.1 RT_Record Class ... 52

4.5 Field Translation ... 54
4.5.1 RT_FieldMap Class ... 55

4.6 RT_Consumer .. 57
4.6.1 RT_Consumer Class .. 58

4.7 The FDF Class Interface .. 67
4.7.1 FDF Class .. 68
4.7.2 Logging Within and Outside the API .. 69
4.7.3 Configuration Management ... 71

Chapter 5 Permission Service .. 72
5.1 Requirements .. 72

5.1.1 Authenticating with a FactSet Workstation ... 73
5.1.2 Authenticating with FactSet Launch .. 73

5.2 Workflow ... 73
5.3 Audit Process .. 74
5.4 Service and Data Model ... 75

5.4.1. Complete Permission Service Example .. 75
Chapter 6 Options Greeks Calculation ... 79

6.1 Requirements .. 79
6.2 New Implied Volatility and Greek Fields ... 79

6.2.1 Sample Data ... 80
6.3 Risk Free Interest Rates.. 80
6.4 Setting up Greek Calculations .. 80

6.4.1 Processing a Message Example ... 81

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

4

Chapter 7 Level 2 Data .. 82
7.1 Requirements .. 82
7.3 Setting up Level 2 Data .. 82
7.2 Level 2 Fields .. 82
7.4 Processing Level 2 Data .. 83

7.4.1 Processing a Message Example ... 83
Chapter 8 Utilities .. 85

8.1 MultiUser .. 85
Appendix A: Error values ... 86
Appendix B: Return Values .. 87
Appendix C: Control Messages ... 89
Appendix D: Connection Strings and URI’s ... 90
Appendix E: Configuration Properties .. 91
Appendix F: Document Version History ... 93

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

5

Notice

This manual contains confidential information of FactSet Research Systems Inc. or its affiliates ("FactSet"). All proprietary rights,
including intellectual property rights, in the Licensed Materials will remain property of FactSet or its Suppliers, as applicable. The
information in this document is subject to change without notice and does not represent a commitment on the part of FactSet.
FactSet assumes no responsibility for any errors that may appear in this document.

FactSet Consulting Services

North America - FactSet Research Systems Inc.

United States and Canada +1.877.FACTSET

Europe ± FactSet Limited

United Kingdom 0800.169.5954

Belgium 800.94108

France 0800.484.414

Germany 0800.200.0320

Ireland, Republic of 1800.409.937

Italy 800.510.858

Netherlands 0800.228.8024

Norway 800.30365

Spain 900.811.921

Sweden 0200.110.263

Switzerland 0800.881.720

European and Middle Eastern countries not listed above +44.(0)20.7374.4445

Pacific Rim- FactSet Pacific Inc.

Japan Consulting Services (Japan and Korea)
0120.779.465 (Within Japan)
+81.3.6268.5200 (Outside Japan)

Hong Kong Consulting (Hong Kong, China, India, Malaysia, Singapore,
Sri Lanka, and Taiwan)

+852.2251.1833

Sydney Consulting Services
1800.33.28.33 (Within Australia)
+61.2.8223.0400 (Outside Australia)

E-mail Support

 support@factset.com

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

6

Document Organization and Audience

This document is intended for application programmers that are familiar with C/C++ and Object-Oriented Systems. Its purpose is to
fully describe the functionality contained within the FactSet DataFeed API. This document is intended to be read cover-to-cover, and
then act as a reference guide to application developers using the FactSet DataFeed API.

¶ Chapter 1 - Introduces FactSet DataFeed API and defines key concepts and terminology.

¶ Chapter 2 - Explains how to build and link applications using this API.

¶ Chapter 3 - Describes the programming concepts at various stages of an application.

¶ Chapter 4 - Lists the complete Class Reference.

¶ Chapter 5 - Describes the Permissioning Service

¶ Chapter 6 - Describes the Options Greeks Calculations

¶ Appendix - Extends the class reference by provided additional details.

Document Convention

This document uses the following conventions:

¶ Code snippets use a courier 10 font - FDF: :connect()

¶ Methods, when first introduced, appear in bold - FDF::dispatch()

¶ The directory delimiter character follows the UNIX convention - forward slash (‘/’)

¶ Items of importance will be in boxes of following type:

× Important notations will be in this type of box.

Trademarks

FactSet is a registered trademark of FactSet Research Systems, Inc.
Microsoft is a registered trademark, and Windows is a trademark of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds
Cisco is a trademark of Cisco Systems, Inc
UNIX ® is a registered trademark of The Open Group.
Intel is a registered trademark of Intel Corporation
XWindows is a registered trademark of Massachusetts Institute of Technology
All other brand or product names may be trademarks of their respective companies.

Acknowledgements

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org).

http://www.openssl.org/

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

7

Chapter 1 Introduction

1.1 The FactSet DataFeed API

The FactSet DataFeed API is a multi-platform C++ object-oriented framework which is used to communicate with a FactSet data
source. The API assists developers with all aspects of communication, request/message processing, and subscription management.
The classes simplify data access by providing asynchronous messages to application-defined callbacks.

Applications have two choices when connecting to a data source: a FactSet Data Server or the local FactSet workstation. The chosen
data source will authenticate as well as permission the various data sets available. Applications that attempt to connect without
authorization will receive a connection error. Connected applications that request data they are not entitled to receive will receive an
error message from the data source.

The first data source option is the FactSet Data Server, which is a back end system that is hosted by FactSet. Connections to a FactSet
Data Server occur over the Internet or a WAN via TCP/IP. Applications must be given a username, password, and the address
information (i.e., IP and port number) for the FactSet Data Server.

Sgd rdbnmc c`s` rntqbd noshnm hr ` knb`k E`bsRds vnqjrs`shnm+ vghbg trdr sgd trdqr dwhrshmf E`bsRds sdqlhm`k hmrs`kk`shnm `kong with
the permissions tied to that trdqr rdqh`k mtladq- Bnmmdbshnmr sn ` knb`k E`bsRds vnqjrs`shnm nbbtq nm sgd trdqr knb`k l`bghmd uh`
COM and TCP/IP. Applications must be given a username and serial number. This configuration is designed for the consuming
application to receive data just for local use on the workstation, not for sharing data to any other user.

User’s machine

FactSet Data Center

ICP and
TCP/IP

TCP/IP

API

Application

API

Application

FactSet
Data Server

Figure 1: Two API clients connected to the two different FactSet data sources

FactSet
workstation

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

8

1.2 Terminology

The following terminology is used throughout this documentation:

Terminology Meaning

API Application Programming Interface - a set of defined interfaces that applications use to
extract information from the FactSet Data Server.

SDK Software Development Kit - a collection of libraries, include files, documentation, and
sample codes that make up this toolkit.

XML eXtensible Markup Language - a defined standard for exchanging information. The
information contains markup tags used to describe the data values.

TCP/IP Transport Control Protocol over Internet Protocol - the protocol that this API uses to
communicate to the FactSet Data Server.

FactSet Data
Server

A server which provides permissioned access to FactSet data.

FDS Multiple meanings. FDS is the ticker symbol for FactSet Research Systems Inc. It is also
the C++ namespace that this API resides. Finally, it may stand for the FactSet Data
Server. The meaning is defined by its context.

Service A data source or supplier identified by a string name.

FDS1 FactSet’s Streaming Production Data Service. . For a complete description of the data
fields, types, and possible values see the FactSet Data Service Specification.

FDS_FUND FactSet’s Fundamental Data Service. Used for End of Day data.

FDS_C FactSet’s Canned Data Service. Recorded data is replayed, used for testing.

FDS_PERM FactSet’s Permission Service. Used by third party integrators to enforce end-users
Exchange permissions using the Workstation Entitled API setup.

Consumer Any application that uses this API.

Stream A virtual tunnel of messages for a given request.

Tag An integer resource used to identify a particular stream.

FDF A singleton class used to communicate with the FactSet Data Server. It is the
abbreviation for FactSet DataFeed.

Callback An application-defined function that is called by the API.

Closure A user-defined void * pointer that is passed back to an application-defined callback.

FID Field Identifier - an integer identifier that describes the encoding and business meaning of
a field value.

Opaque Data Data without a defined interpretation, which is simply a pointer and size to the data.

Field/Value Pairs A self-describing message format used in API messages. Each pair contains a FID and
some opaque data. The FID defines the type and meaning of the data.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

9

1.3 High Level Overview

The following diagram shows the logical connections to the FactSet Data Server:

Application

FactSet Data Server

TC
P

/I
P

Application
Threads

 Messages

API

Application Server

Figure 2: High Level Overview

 Requests

API
Threads

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

10

Applications will use the interface defined by the API to do the following:

¶ Connect to the Data Server: This will initiate the TCP connection and start an internal communication thread within the API.

¶ Request Data: Requests will be posted on a queue to be sent out via the communication thread.

¶ Receive Messages via Callbacks: Callback events will be posted to a message queue by the communication thread. The
application will call an API method to dispatch any available callbacks. All callbacks will be executed in the context of an
application thread.

¶ Disconnect from the Data Server: The application may disconnect from the Data Server at any time. This will destroy the
communication thread as well.

Information on API Threads

The API threads will NEVER execute application routines. It is up to the application to give control back to the API (via dispatch()), in
order to receive messages via callbacks.

The API will create one thread per RT_Consumer object. This thread serves as a communication thread and is responsible for all of
the TCP/IP communication with the data server. The thread is created when the application connects to the FactSet Data Server, and
destroyed when the application calls disconnect().

In addition, the API starts a single global maintenance thread. This thread will be created only if the application uses the Logging
interfaces within the API. Once this thread is created, it can only be destroyed on program termination.

1.4 API Core Functionality and Benefits

The API provides the following services to applications:

¶ Support for multiple development platforms

¶ Abstract the underlying TCP/IP connection

¶ TCP connection failure handling

¶ Simplified data access

¶ A consistent interface for opening and closing streams

¶ Subscription Management

¶ Caching

¶ Logging and Configuration Management

¶ Class-thread-safe, thread-aware

1.4.1 Support for Multiple Development Platforms

Multiple development environments are supported by the API. This toolkit is available on the following systems: Linux, Solaris, and
Microsoft Windows. The specific platforms may vary based on the type of operating system, but these can be extended if needed. For a
complete list of supported platforms, see section 2.1.1. Supported Compilers, Operating Systems, and Architectures

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

11

1.4.2 TCP/IP Communications

The API handles all aspects of the TCP/IP connection to the Data Server including problems related to asynchronous communication,
byte-ordering, and the buffering needed when using stream-oriented protocols.

The API will detect TCP network failures, and will notify all open streams of the condition (i.e., each stream will receive a stale
message). Applications only need to monitor the individual streams, and not the connection as a whole.1

The API will continuously retry the connection to the Data Server in the event of a TCP disconnect. Upon a successful reconnect, the
current open streams will also be re-established. Refresh data will be sent and each open stream will transition from a stale to a non-
stale state.

Required Ports:

¶ tcp/6681 – Connection to Exchange DataFeed Server

¶ tcp/443 – Web-based authentication

api(-stage).df.factset.com and canned-stage.df.factset.com: tcp/6681 need to be opened outbound-initiated for subnets:

¶ 192.234.235.0 (255.255.255.0)

¶ 64.209.89.0 (255.255.255.0)

1.4.3 Security Protocols

Clients should not hardcode dependencies on any specific security protocol as FactSet is continuously reviewing security policies and
reserves the right to disable support for older security protocols with short notice2. The current supported protocols are TLSv1.1 and
TLSv1.2 but at a future date, these may be replaced with future versions. Clients should make sure that their software can handle
ever changing Security Protocols.

1.4.4 Simplified Data Access

The API delivers data using field/value pairs. The RT_Message class allows applications to easily extract the data fields. This class
supports both random and sequential access. Furthermore, the application can coerce the data values to std::string .

1.4.5 Request Consistency

The API provides a consistent interface for opening and closing streams. All requests will receive an integer identifier (tag) to a
virtual stream. This applies to both static (i.e., snapshot) and dynamic requests. In addition, messages on any given stream will be
associated by the stream identifier. To close a stream, the application needs to pass the stream id back to the API.

1 The API does inform the application about the connection status as a whole, and the application can use this information in any way it sees fit.
2 As of 29-Jul-2017 support for security protocol TLSv1.0 is disabled and requests using this TLS version will fail.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

12

1.4.6 Subscription Management

The API allows applications to request duplicate data items. Each item will create its own stream. Although the virtual streams are
independent they will receive identical messages. However, there will be only a single stream to the data server. This optimization
saves both CPU resources and network bandwidth.

1.4.7 Caching

The initial message on the stream will contain all the fields for a message. Subsequent messages may only contain the fields that
have changed. This behavior may require an application to keep state of all the fields for a given a stream. For the benefit of the
application, the API will perform this caching. A cached data record is associated with every stream and is available during callback
processing. An application may use this record in any matter it sees fit.

1.4.8 Logging and Configuration Management

To aid developers with troubleshooting and debugging, the API supports logging of error and informational messages to standard
error (cerr). Applications can request that an actual log file be opened and messages be directed to that file. In addition, applications
using the API are allowed to log events to the same file.

@ookhb`shnmr sxohb`kkx mddc sn ®rnes-bncd¯ bdqs`hm `ookhb`shnm rdsshmfr- Enq dw`lokd+ sgd gnrsm`ld ne sgd E`bsRds C`s` Rdqudq rgntkc
be stored in some configuration file or system registry. The API includes functionality to assist applications in querying configuration
files and system registries.

1.4.9Threading Support

This API is both thread-aware and in some cases thread-safe. Not all objects are thread-safe, but the entire API is thread-aware. The
definitions of thread-aware and thread-safe are as follows:

Thread-aware: The code in question does not use static or global variables without the use of mutexes. All IN/OUT parameters are
passed via the stack, and methods never return references to non-const static objects. These conventions allow objects of the same
class to be independent of each other. All API classes are thread-aware, and multiple threads are allowed to operate on
objects of the same class, provided tha t each thread is operating on its own object. However, thread-aware objects are not
permitted to be operated on by multiple threads at-a-time without the use of a mutex. The notion of thread-aware is commonly
called class-thread-safe.

Thread-Safe: Multiple threads are allowed to operate on the same object. The only API classes that are thread-safe are the
RT_Consumer and the FDF class.

Read-Only: It is safe to return a reference to a const static object provided that this object has a well-defined lifetime and cannot be
modified. This allows multiple threads to use the same object in a read-only mode. The RT_FieldMap::get_default() method is an
example of returning a const reference.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

13

Chapter 2 Building Applications

2.1 Toolkit Organization

For Microsoft platforms, the toolkit is extracted from a simple Windows MSI file. The installation folder is specified during
installation using a standard dialog (C:\Users\xxx\AppData\Local\FactSet\DataFeed).

For Unix platforms, the toolkit is a self-extracting shell script. The script extracts the tar archive located at the end of the script. All
platforms follow thedirectory hierarchy outlined in the following table.

Directory/Filename Contents Additional Notes
RELNOTES.TXT Contains the latest release notes

for this version of the toolkit.

VERSION.TXT Contains the toolkit’s version label
and build number.

CHECKSUMS.TXT A file containing the check-sum of
each file in the toolkit.

LICENSES.TXT Contains license agreements.

bin/ Binary utilities and samples. For Windows, this directory also includes the actual
debug and release DLL’s.

etc/ Definition files Example: rt_fields.xml
include/ The API header files All the include/ files are in the FDS subdirectory
lib/ The API library files Each platform will have its own folder (e.g., mswin).

See the library naming convention section. A
subdirectory exists for each supported platform.

log/ Sample programs and utilities will
log to this directory.

Microsoft applications are able to use the registry
to ensure logs get placed in this directory.

sample/ Sample applications Each folder in this directory is targeted for a
particular language (e.g., the API_C++ folder
contains C++ applications).

2.1.1 Supported Compilers, Operating Systems, and Architectures

Every effort has been made to test different compilers, versions, and architectures using this API. However, the C++ language does not
dictate standards at the binary level. Compiler vendors are free to implement many of the standard C++ concepts in their own way. Some
examples include exception handling, name mangling, and multiple inheritance implementations. Therefore, application developers may
be forced to use a limited set of compilers supported by this toolkit.

The toolkit currently supports the following platforms:

¶ Linux using g++ (Compiler version 4.4.7 and 4.8.5)

¶ 2010/10.0 (Compiler version 16.0)

¶ 2012/11.0 (Compiler version 17.0)

¶ 2015/14.0 (Compiler version 19.0)

Additional platforms may be added in the future. Please contact FactSet Consulting Services if a platform does not appear in the list
above.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

14

2.1.2 Library Naming Conventions

To support multiple versions and avoid incorrect linking of this toolkit, this library follows a well-defined naming convention:

For Windows:

fdsrt_{compiler/version}_{arch}_{os}{flags}.{ext}

Where:

¶ {compiler/version} can be one of the following:

o vc10 for VS2010

o vc110 for VS2012

o vc140 for VS2015

¶ {arch} is presently set to x86

¶ {os} can be one of the following:

o win32 for 32-bit,

o win64 for 64-bit

¶ {flags} is either blank, or "d" for debug

¶ {ext} the file extension:

o .dll: for Windows at run-time.

o .lib: for Windows at link-time.

Examples:

¶ fdsrt_vc10_x86_win32.dll

¶ fdsrt_vc140_x86_win64d.dll

For Linux:

lib fdsrt_{major version}_{minor_version}_{compiler/version}_{arch}_{os}{flags}.{ext}

Where:

¶ {major version} is current major version (presently set to 2). See the versioning section.

¶ {minor version} is current minor version (presently set to 4). See the versioning section.

¶ {compiler/version} is the current compiler version (presently set to gcc4)

¶ {arch} is presently set to x86

¶ {os} can be one of the following:

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

15

o linux32: Linux 32-bit

o linux64: Linux 64-bit

¶ {flags} is either blank, or "d" for debug

¶ {ext} the file extension: .so

Examples:

¶ libfdsrt_2_4_gcc4_x86_linux32.so

¶ libfdsrt_2_4_gcc4_x86_linux32d.so

¶ libfdsrt_2_4_gcc4_x86_linux64.so

¶ libfdsrt_2_4_gcc4_x86_linux64d.so

2.2 Compiling Applications

The first step in compiling an application would be to extract the toolkit archive to a directory. The important subdirectories for
building applications are include and lib. There is only a single set of include files for all supported platforms, but every platform will
have its own library. The naming convention of each library was outlined in section 2.1.2 Library Naming Conventions.

To simplify the following steps, assume that the root of this archive is located in {FDS_ROOT}. In the default case this would be set to
®C:\Users\xxx\AppData\Local\FactSet\DataFeed̄ -3

2.2.1 Microsoft Platforms

When using Microsoft Visual Studio the following must be added to the project settings:

¶ The path must include the API directory. This can be accomplished by either using the /I compiler switch directly, or by changing
the project properties dialog (C++ folder, General Sub-Item, Additional Include Directories Textbox). The {FDS_ROOT}\ directory
should be added to this list. Multiple items can be separated by a ‘;’. This step should be done for ALL configurations (i.e.,
Debug, Release, and any others that are defined).

¶ The library path should include the {FDS_ROOT}\lib\mswin directory. This can be done using the /LIBPATH compiler switch or it
can be accomplished via the project properties dialog (Linker folder, General Sub-Item, Additional Library Directories Textbox).
This should be done for ALL configurations (i.e., Debug, Release, and any others that are defined).

It is not necessary to add the library name to the project properties. The API header files will insert a pragma comment for the
Microsoft linker. The correct library name will be picked at compile time based on the header files and the configuration used.

Since the exact library is chosen at compile time, it is important that all application-defined configurations that use the Debug run-
time library also set the _DEBUG preprocessor macro. Configurations that use the Release run-time library should not set the
_DEBUG macro. This is a standard Microsoft convention that is already defined in the default Debug and Release configurations.

3 It is often better to use relative paths for toolkit installation directory (e.g. the sample applications in the toolkit use the relative path “..\..\..\” to locate header and library
files).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

16

2.2.2 Linux Platforms

When using the g++ compiler, certain compiler options should be verified:

¶ g++ - v should report a threading model of POSIX

When compiling Linux applications using the g++ compiler:

¶ The {FDS_ROOT}/lib should contain a symbolic link named platform . This symbolic link is automatically created by the self-
extracting install script.

Example: platform - > ./ gcc3 _x86_linux64

¶ The ïpthread option should be passed to all application source modules.

¶ The ïI switch should be added to include the {FDS_ROOT}/include directory.

 Example: - I {FDS_ROOT}/include .

¶ The ïL parameter should be passed to the linker to include the following directory:

 {FDS_ROOT}/lib/platform directory

 Example: ïL{FDS_ROOT}/lib/platform

¶ ïl fdsrt should be added during linking to link the FactSet DataFeed API4.

2.3 Running Applications

Dynamic libraries need to be installed on any system that will execute applications built using the API. It is the responsibility of the
application developer to ensure these libraries are available on all run-time systems.

2.3.1 Windows Systems

Microsoft has a well-defined search order for applications that need to locate a DLL. The exact reference article can be found at
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx.

In most cases, applications will search the directory in which the application is loaded, then the system directories (including the
Windows systems directory), and finally all directories listed in the PATH environment variable.

Application developers that use the FactSet DataFeed API should ensure that the fdsrt DLL is available and locatable on all run-time
systems. It is common to place this DLL in the same directory as the application.

In order to connect to the local FactSet workstation and use it as a data source, the current minimum supported or a more recent
version of the FactSet workstation ltrs ad hmrs`kkdc nm sgd trdqr l`bghmd-

4 The platform directory and fdsrt file are symbolic links to a platform-specific directory and library name.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

17

2.3.2 UNIX Systems

Applications linked with UNIX dynamically linked libraries (so files), will use the path at link time to locate its shared libraries. If the
production systems have these libraries installed in different locations, there are two options. The first is to set the linker flags to use
a different runpath. The second is to set the LD_LIBRARY_PATH environment variable before starting the application. This variable
should contain the path of the libfdsrt_2_4_{platform}.so file. The symbolic link, libfdsrt.so, is not needed on the run-time systems.

The dynamic loader utility, ldd , can be used to verify that all applications are able to locate all dependent shared objects.

2.4 Versioning

The FactSet DataFeed API is a dynamically linked library which has a standard 3-digit version (x.y.z) label. The first number is the
major release number (x), followed by the minor release number (y). The last number, (z), is the revision number.

Changes in only the revision number (z) will guarantee binary compatibility with existing applications (i.e., recompilation is NOT
necessary). Changes in the minor release number (y) ensure source code compatibility, but applications built previously MUST be
recompiled to use the newer library. A change to the major release number (x) may require source code changes for older
applications. The severity of the change depends on the API release notes, and the manner in which the application makes use of the
API.

For example, if the current API version is 2.0.1 and the new API is 2.0.2, applications may take advantage of the new features/fixes
simply by installing the library on the run-time systems. If the new version label is 2.1.1, the application must recompile, but source
code changes are not necessary. A version change to 3.0.1 may require source code changes (depends on the type of changes and the
application). A complete list of changes for a particular release will always be in the release notes located in the toolkit archive.

2.4.1 Version Control

UNIX and Microsoft version control methods differ drastically. UNIX .so files have version information embedded into the
application (soname) at link time. The actual .so file used by the linker is a symbolic link to the most recent version. Therefore, new
applications will use the latest library, while older applications can still find the version of the .so file used when the application was
originally linked5.

Since it would be error-prone to have developers manually change the name of the library for every new release of the toolkit, the
library uses #pragma comment statements in its header files. These statements instruct the linker to load in the correct library.
Application programmers should not include the library name, and therefore do not need to modify their project settings each time a
new library is installed. Although this hides the exact name of the library from the application developer, it guarantees the proper
library name at link time. In addition, it ensures that the correct library type is being linked (Debug or Release).

5 Older versions of the library are kept in the toolkit archive until an end of life agreement has been reached.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

18

Chapter 3 Programming with the API

3.1 Program Setup and Initialization

3.1.1 Standard Conventions

This API is designed so that its interfaces adhere to a common set of standards. The following conventions are used by the FactSet
real-time API:

¶ All class names start with the three character prefix “RT_.” The exception is the FDF class (which is used as a proxy to the proper
RT_Consumer class).

¶ All methods are lower case with the ‘_’ character to separate words.

¶ All methods that need to return an error do so via the rt_errno Enumeration.

¶ All IN parameters are passed into API methods either by value, const reference, or const pointer. The only exception to this is the
closure argument. It is passed as a non-const pointer although the API cannot modify the contents of this area.

¶ All OUT parameters are passed into the application via a non-const pointer argument given by the application. The application is
responsible for allocating storage of the actual value being passed out.

¶ All IN/OUT parameters are passed in by non-const reference.

¶ Most API methods will accept and return null-terminated “C” strings (i.e. const char *). However, real-time data fields are NOT
null-terminated. In this case, the API can return a simple structure called an RT_Field. This structure contains a pointer to the
data, along with the size.

3.1.2 Closure Arguments

Hs hr bnllnm enq @OHr sg`s rtoonqs b`kka`bjr sn `bbdos trdq `qftldmsr ctqhmf b`kka`bj rdsto- Sgdrd `qftldmsr+ `krn jmnvm `r
closure arguments, are passed back to the application as parameters to the callback function. All API functions that accept a
callback, will also accept a void * closure argument. It is up to the application to define its meaning. The API treats this pointer as

an opaque piece of data and will not modify its content.

3.1.3 Namespaces and Included Files

All the included ehkdr rgntkc ad qdedqdmbdc trhmf sgd o`sg ®FDS/̄ - Sghr qdk`shud o`sg vhkk oqdudms hmbktcdd files with the same name
from clashing with the API versions.

A single included file is all that is needed to support the majority of the classes and methods in the API. Applications must include
®ECR.qs^`oh-g¯ hm `kk rntqbd lnctkdr trhmf @OH etmbshnmr- Hm `cchshnm+ `ookhb`shnmr rgntkc hmbktcd ®ECR.qs^ehdkcr-g¯ vgdm eheld
identifiers are needed. The fields file is kept separate due to the potential for many changes and the size of the file.

All API methods and classes are in the FDS namespace. Applications should either preface all API classes with FDS:: or use the
following statement: using namespace FDS ;

3.1.4 The FDS::FDF Class

Since many applications will only need a single connection to the Data Server (and hence a single RT_Consumer object), the class
FDF can be used for convenience. This class consists of purely static methods and can be treated like a Singleton. It uses the default
RT_Consumer object as the implementation. There is only one default RT_Consumer object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

19

3.1.5 A Complete Example

#include <iostream>

#include <string>

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

using namespace std; // for convenience

using namespace FDS; // for convenience

void on_message (int tag, const RT_Message * msg, const RT_Record *rec, void *c)

{

 // Uncomment to print each update message and cached record

 // cout << " Message : " << * msg << " \ nRecord: " << * rec << endl;

 if (msg- >is_error()) {

 cout << "Error: " << msg- >get_error_description() << endl;

 // Note: msg- >is_closed() must be true

 FDF::cancel(tag);

 return ;

 }

 string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();

 string bid = rec - >get(FIDS::BID_1).to_string();

 string ask = rec - >get(FIDS::ASK_1).to_string();

 cout << "Update: " << msg_type << " Bid: " << bid

 << " Ask: " << ask << endl;

 // if the server closed the stream close our side as well

 if (msg- >is_closed()) { FDF::cancel(tag); }

}

int main(int argc, char **argv)

{

 rt_errno err;

 RT_FieldMap::create("../../../etc/rt_fields.xml");

 FDF::set_connection_info("client:secret@api - stage.df.factset. com");

 err = FDF::connect();

 if (err) { cerr << "c: " << err << endl; return (int)err; }

 int tag; // create a real - time RT_Request for service=FDS1, symbol=FDS - USA

 RT_Request req("FDS1", "FDS - USA");

 FDF::request(req, on_ message , NULL, &tag);

 cout << "made a request for " << req << " tag=" << tag << endl;

 // dispatch message s

 while (true) {

 FDF:: dispatch (- 1);

 }

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

20

3.2 Connecting to a Data Source

An application connects to a data source during initialization. There are two options when picking a data source to connect to: a
FactSet Data Server and the local FactSet workstation. A connection to a FactSet Data Server occurs over the Internet or a WAN via
SBO.HO- @ bnmmdbshnm sn sgd knb`k E`bsRds vnqjrs`shnm nbbtqr nm sgd trdqr knb`k l`bghmd- Vgdm bnmmdbshmf sn ` C`s` Rdqudq+
applications should set the connection information, and then call the connect() function. To connect to the local FactSet workstation,
only a call to the workstation_connect() function is required6.

By default, connect() and workstation_connect() are synchronous, and in rare cases a call may block for an extended period of time
(currently set to 60 seconds). If applications wish to use a non-blocking connect, true should be passed as to the async parameter of
the connect functions.

The host for production data is api.df.factset.com for production and api-stage.df.factset.com for beta. If canned data is required for
development purposes the host canned-stage.df.factset.com with the FDS_C service should be used.

// connect to api.df.factset.com with user= " client " and password= " secret " .
err = FDF::set_connection_info(" client:secret@api.df.factset.com ");

err = FDF::connect(); // connects synchronously to a Data Server

err = FDF::connect(false); // connects synchronously to a Data Server

err = FDF::connect(true); // connects asynchronously to a Data Server

// connects synchronously to the FactSet workstation

err = FDF::workstation_connect(ñCLIENT-1234ò);

// connects synchronously to the FactSet workstation

err = FDF::workstation_connect(ñCLIENT-1234ò, ñò, false);

// connects asynchronously to the FactSet workstation

err = FDF::workstation_connect(ñCLIENT-1234ò, ñò, true);

A synchronous connect operation will block until both the connection is established and the application has successfully
authenticated with the data source. If a synchronous connect operation fails, applications must do one of the following:

1. Retry the connect operation at some future time.

2. Connect asynchronously.

3. Exit the application.

× integrators are expected to limit the number of connection retires in case of failures to avoid unnecessary load on
the DataFeed servers. Abusing the services may result in the account beeing locked down without any prior notice. If
there are any questions on the design of the service please reach out to your FactSet representitive.

An asynchronous connect operation will return immediately. If an asynchronous connect operation returns an error, a connection
will never get established. In this case, the application should log the error and exit. This is a rare condition which will only happen
if an operating system resource could not be created (like a thread).

6 The workstation_connect() and the FactSet workstation need to be run under the same user or FactSet will give an error that there are more than one instance of Marquee
running.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

21

Upon returning from a successful asynchronous connect operation, the connection and authentication will be processed by an API
thread. A control callback will be invoked after a successful or unsuccessful connect operation. If the connection fails, the
connection is retried periodically7.

× If connect() or workstation_connect() return an error, the connection will never get established. Applications
must issue a successful connect before dispatching any messages. This behaviour is true for both asynchronous and
synchronous connections. However, applications are allowed to make requests before a connection is established. These
requests are queued internally within the API until a successful connection is established.

3.2.1 Connection Strings

Currently both basic autehtication and One Time password8 is valid authentication methods but users are being migrated to OTP. In
order to connect to a FactSet Data Server, the application must set the host name (or IP address), the port number, the username,
and the password. These items should be passed into the set_connection_info() method as parameters. The function takes

null-terminated strings as input. The following outlines some examples.

One Time Password - set_connection_info

set_connection_info("api-stage.df.factset.com", "client", "AAAA", NULL, NULL, "C:\\Path\\To\\Counterfile", false); ± The API
vhkk bnmmdbs sn sgd gnrs ®`oh-rs`fd-e`bsrds-bnl¯ nm sgd cde`tks onqs ne ®5570¯- Hs vhkk trd ` trdqm`ld ne ®bkhdms¯ `mc ` Nmd Shld
password generated by the key and counter as per 3.2.1.1 using the Key ID AAAA and the key and counter file
C:\\Path\\To\\Counterfile.

Basic Authetication - set_connection_info

set_connection_info(®client:aaa@api-rs`fd-e`bsrds-bnl¯(± Sgd @OH vhkk bnmmdbs sn sgd gnrs ®`oh-rs`fd-e`bsrds-bnl¯ nm sgd cde`tks
onqs ne ®5570¯- Hs vhkk trd ` trdqm`ld ne ®client̄ `mc ` o`rrvnqc ne ®```¯-

set_connection_info'®client?0/-1-3-493/52¯(± Sgd @OH vhkk bnmmdbs sn sgd gnrs 0/-1-3-4 nm onqs 3/52 trhmf sgd trdqm`ld ®client̄ -
The password is empty in this case.

set_connection_info(NULL) ± The API will use the global property RT_CONNECTION from the FDF class. The format of the
RT_CONNECTION string is explained in Appendix D and is identical to that of the previous examples (e.g. client@10.2.4.5:4063).

rds^bnmmdbshnm^hmen'®qdf9.GJDX^KNB@K^L@BGHMD.Rnesv`qd.E`bsRds.ECE¯(± The API will look for a property named
RT_CONNECTION in the Windows registry. The hive location is HKEY_LOCAL_MACHINE, and /Software/FactSet/FDF is the path
within the hive.

rds^bnmmdbshnm^hmen'®ehkd9.dsb.bnmmdbshnm^hmen-bef¯(± The API will look for a property named RT_CONNECTION in the file
/etc/connection_info.cfg. The format of this file is given in Appendix E.

It is also possible to ses ltkshokd bnmmdbshnm rsqhmfr `s nmbd ax bnmb`sdm`shmf d`bg rsqhmf+ rdo`q`sdc ax ` ohod '¬{). The following is an
example.

7 If the connection is terminated (via a TERMINATE control message), connection attempts will no longer be retried. This is typical when the user credentials are invalid (see
Appendix C).
8 FactSet leverages the HMAC-Based One-Time Password Algorithm described in RFC 4226 (http://www.ietf.org/rfc/rfc4226.txt) and session tokens to ensure all requests to
the API are made by authenticated users.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

22

rds^bnmmdbshnm^hmen'®client:aaa@api-stage.factset.com|client:aaa@api-stage2.factset.com̄ (± When multiple connection
strings are specified, the API will attempt to connect using each connection string, until a successful connection is made. If the
connection is subsequently lost, the API will continue trying to connecting using each connection string.

The set_connection_info() methods will only return an error if the host could not be extracted given the specified uri. It does not
check if the host is valid, or if the host can be translated to an actual IP address. It will simply store the connection information for
later use. The connect() method will later use this information to resolve the hostname and port before attempting the connection to
the FactSet Data Server.

× If connect() is called when already connected the first connection will be cancelled and the new connection will be
re-established with the new Connection String.

3.2.1.1 Retrieving the One Time Password9

The authentication protocol for Exchange DataFeed is using One Time password. At the initial setup the key administrator10 will need
to follow the below steps to generate the key and counter required to authenticate with OTP.

1. Go to http://auth-setup.factset.com

2. Login using the FactSet .NET account received in the welcome email.

3. Enter the serial number tied to the server account used to connect to the feed.

4. Make sure the PROD is selected, rather than BETA.

5. Click Get New Key.

6. Create a new file - On the first line, copy and paste the “Key” from the web site (don’t include the word “Key:”, just the actual
string).

7. On the second line, copy and paste the counter value.

8. Save this file as <KeyId>.data. Most likely that will be “AAAA.data” and use this file as input in the set_connection_info function
as per below.

9. Alternatively take note of the values and use directly in set_connection_info.

3.2.1.2 Connect with OTP

In the below samples three different examples of how to use the key and counter extracted above is used in
set_connection_info .

// Connect to api - stage.df.factset.com with user="client" with key/counter file

// C: \ Path \ To\ Counterfile \ AAAA.data contains the key (hex string) on the first

// line and the counter (decimal format) on the second, for user "client" and //

device ID "AAAA"

9 All users will migrate to OTP in the future
10 The key administrator needs to be given access to be able to generate the key, contact your FactSet representative to get the required access enabled.

http://auth-setup.factset.com/

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

23

FDF::set_connection_info("api - stage.df. factset.com", "client", "AAAA", NULL, NULL,

"C: \ \ Path \ \ To\ \ Counterfile", false);

// Connect to api - stage.df.factset.com with user="client" with key/counter file, // or

given values if no file exists

// If C: \ Path \ To\ Counterfile \ AAAA.data contains a key a nd counter, those will be // used

instead of the given key "5c706e..." and counter "730332..."

// Otherwise the given key/counter will be used and

// C: \ Path \ To\ Counterfile \ AAAA.data will be created from the given values to be

// used for subsequent atte mpts

FDF::set_connection_info("api - stage.df.factset.com", "client", "AAAA", "5c706e...",

"730332...", "C: \ \ Path \ \ To\ \ Counterfile", false);

// Connect to api - stage.df.factset.com with user="client" with given values

// regardless of existing key/counter file .

// The given key/counter will be used and C: \ Path \ To\ Counterfile \ AAAA.data will be //

overwritten or created from the given values to be used for subsequent attempts

FDF::set_connection_info("api - stage.df.factset.com", "client", "AAAA", "5c706e...",

"730332...", "C: \ \ Path \ \ To\ \ Counterfile", true);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

24

3.2.2 Synchronous Connect Sequence Diagram

8) Start API Thread

Application API API
Thread

Data
Server

1) connect()

 2) gethostbyname()

4) TCP ACK/NAK

6) Encrypt(user, password) and send Login

7) Login ACK/NAK

3) TCP Connect()

9) connect() returns

5) Diffie-Hellman Key Exchange

Figure 3: Synchronous Connect Sequence Diagram

set_connection_info()

Method returns immediately

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

25

3.2.3 Synchronous Connect Example

#include <iostream> // include all system header files

#include <string>

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

using namespace std; // for convenience

using namespace FDS; // for convenience

int main(int argc, char **argv)

{

 string connection = "client:secret@api - stage.df.factset.com:6681";

 rt_errno err;

 RT_FieldMap::create("../../../etc/rt_fields.xml");

 FDF::set_connection_info(connection.c_str());

 // if using OTP

 // FDF::set_connection_info(ñapi-stage.df.factset.comò, ñclientò,ñAAAAò, NULL,

 // NULL, ñC:\ \ Path \ \ To\ \ Counterfileò, false);

 err = FDF::connect();

 if (err) { cerr << "conn: " << err << endl; return (int)err; }

 // é

 // make r equests

 // process the event loop and handle the callbacks

 // é

}

The example code above demonstrates how to connect to the Data Server synchronously.11

The first step in many programs would be to load a Field Map file. This file is located in the etc directory of the toolkit. The code
`anud trdr ` qdk`shud o`sg knb`shnm '®--.--.--.dsb.qs^ehdkcr-wlk¯(a`rdc nm sgd `ookhb`shnmr vnqjhmf chqdbsnqx- @ookhbations should
ensure that this path is correct (create() will return NULL if the file could not be located or opened). The RT_FieldMap class allows
the application to translate field names to ids and vice versa. Although this step is not absolutely necessary, it helps with debugging
and troubleshooting. For more information on the RT_FieldMap class, see section 4.5.1 RT_FieldMap Class.

The second step is to pass in the connection information (i.e., host = api-stage.df.factset.com, port = 6681, user = client, password =
secret). After setting the connection information, the application calls connect() to attach to the Data Server. For additional details
on setting the connection information, see section 3.2.1 Connection Strings or section 4.6.1 RT_Consumer Class.

11 All of the supporting code outlined in this section is provided in the sample toolkit directory named Example3.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

26

3.2.4 Asynchronous Connect Sequence Diagram

2) Start API Thread

Application API API
Thread

Data
Server

1) connect()

a) gethostbyname()

c) TCP ACK/NAK

e) Encrypt(user, password)
 and send Login

f) Login ACK/NACK

b) TCP Connect()

3) connect() returns

d) Diffie-Hellman Key
 Exchange

Figure 4: Asynchronous Connect Sequence Diagram

g) Queue control msg.

4) dispatch()

5) control callback()

set_connection_info()

Method returns immediately

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

27

3.2.5 Asynchronous Connect Example

#include <iostream>

#include <string>

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

using namespace std; // for convenience

using namespace FDS; // for convenience

int main(int argc, char **argv)

{

 string connection = "client:secret@api - stage.df.factset.com:6681";

 rt_errno err;

 RT_FieldMap::create("../../../etc/rt_fields.xml");

 FDF::set_connection_info(connection.c_str());

 // if using OTP

 // FDF::set_connection_info(ñapi-stage.df.factset.comò, ñclientò, ñAAAAò, NULL,

 // NULL, ñC:\ \ Path \ \ To\ \ Counterfileò, false);

 err = FDF::connect(true); // connect asynchronously

 if (err) { cerr << "conn: " << err << endl; return (int)err; }

 // é

 // make requests

 // process the event loop and handle the callbacks

 // é

}

The example code above demonstrates how to connect to the FactSet Data Server asynchronously. The code is identical to the
previous example except for an additional parameter passed into connect().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

28

3.3 Requests and Cancels

3.3.1 Opening the Stream

Requests are made either using the FDF::request() or RT_Consumer::request() method. Although requests are

typically made after connection establishment, the application can make requests at any time. If the API is disconnected from the
server, or a particular service is not available, requests will be queued internally by the API. The request method is defined as
follows:

rt_errno request (const class RT_Request &req, RT_Consumer::MesgC B cb, void *closure, int

*tag);

The RT_Request class is the first parameter required by the request() method. This class can be constructed using a service and key.
A service is a string that identifies a data source and the symbol is the key for that particular data source. In addition, the
RT_Request object allows applications to explicitly set the snapshot flag to true for a static request and false for a dynamic request. A
dynamic request will open a virtual stream with the Data Server for that particular data element. A static request will also open a
virtual stream, but the first message on that stream will indicate a closure of that stream. This type of request is typically called a
snapshot request.

The second parameter of the request method is the application-defined callback procedure. This procedure is defined as a
RT_Consumer::MesgCB and must have the following signature:

void (*)(int tag, const RT_Message *m sg, const RT_Record *rec, void *closure);

This callback function will receive the subscription tag, along with the message and cached data record. The final parameter is the
closure argument which will match the third parameter of the request method.

On each call to RT_Consumer::request() a tag will be returned via an OUT parameter. Even if the function returns an error such
as RT_E_NO_CONN or RT_E_NO_SERV, a valid tag will be returned (since the request has been queued). This tag is an
integer and is the resource id for the stream that has just been opened. A tag is returned for both static and dynamic requests.

3.3.2 Closing the Stream

The messages for a stream will be passed to a callback function along with the stream id. Eventually the stream should be closed and
the resource tag freed. This resource can be freed in either two ways: 1) calling FDF::disconnect () or 2) calling

FDF::cancel(tag) . The stream will continue to be open until one of these two functions is called. This is true even for

snapshot requests. As mentioned before, snapshot data is treated as a request for a single message, and that message should have
the close (end of stream) indicator set. This indicator tells the application that the stream is closed on the server-side. It is the
responsibility of the application to make sure the tag is cancelled after receiving the snapshot message. A call to cancel() will close
the stream on the client-side.

× Canceling a tag that was already cancelled results in undefined behavior. Leaking tags can cause applications to
consume more memory and respond slower. Applications should treat tags like they treat open files, or pointers to
heap-allocated memory.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

29

3.3.3 Tag Ownership and Lifetime

Tags are assigned by the API and given to clients. The lifetime of every tag is controlled by the application. Applications create tags
via the request() method and free the tag via the cancel() method.

Clients cannot choose the tag identifier. They are assigned by the API. Instead, the closure argument can be used by clients who
need an application-defined identifier for each open stream.

3.3.4 Dynamic Request

void on_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 cout << "Message: " << *msg << endl;

 cout << "Record: " << *rec << endl;

 if (msg - >is_error())

 cout << "Error: " << msg - >get_error_description() << endl;

 // if the server closed the stream close our side as well

 if (msg - >is_closed()) { FDF::cancel(tag); }

}

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 int tag;

 // create a real - time RT_Request for service=FDS1, symbol=FDS - USA

 RT_Request req("FDS1", "FDS- USA");

 FDF::request(req, on_ message , NULL, &tag);

 cout << "made a request for " << req << " tag=" << tag << endl;

 // process the event loop

}

Sgd dw`lokd bncd `anud rgnvr ` qdptdrs adhmf l`cd enq sgd rxlank ®ECR-TR@¯ tmcdq sgd ®ECR0¯ rdquhbd- Since the snapshot flag
parameter for creating the RT_Request is false, the request is for a dynamic subscription. The RT_Request object gets passed to the
request method, along with the callback, on_message . In this example, the closure argument is not used and set to NULL. The

resource id for the stream is returned in the local variable tag.

The callback simply prints the message and record. However, it does check to see if the stream was closed, and if so, it closes the
client-side stream by canceling the tag. The server may close the stream at any time. In addition, error messages (e.g.,
RT_E_NOT_FOUND) will cause the stream to set the close/end-of-stream indicator. The example callback handles both of these
conditions.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

30

3.3.5 Static Request

void on_static_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 cout << "Message: " << *msg << endl;

 cout << "Record: " << *rec << endl;

 // No reason to check is - >closed(), since we only want a single

 // message. So just call cancel() after processing

 FDF::cancel(tag);

}

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 // create a static RT_Request for service=FDS1, symbol=IBM - USA

 // The parameter "true" sets the snapshot_only flag

 int stag;

 RT_Request sreq("FDS1", "IBM - USA", true);

 FDF::request(sreq, on_ static_message , NULL, &stag);

 cout << "made a static request for " << sreq << " tag=" << stag << endl;

 // process event loop

}

The request for snapshot data is similar to the one for dynamic data except that the snapshot parameter is set to true. In fact, the
callback from the previous example could have been used in this example. Since static requests will close the stream on the first
mesr`fd+ sgd oqduhntr nm^ldrr`fd b`kka`bj vntkc g`ud b`mbdkkdc sgd s`f- Gnvdudq+ sgd btqqdms dw`lokd rs`sdr sgd `ookhb`shnmr
intentions more clearly when the call to FDF::cancel() is explicit (like above), rather than based on a predicate (like the previous
example).

3.3.6 Bulk Subscriptions

Where possible12 it is recommended that applications request subscriptions in bulk. The bulk request method is defined as:

rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb, void *closure,

std::vector< int > &tag s);

12 Options are not supported within bulk requests at this point

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

31

× Note that the bulk interface is only supported for the FDS1 service

The significant changes between the bulk interface and the regular request interface are:

¶ The key for the RT_Request should be a comma-separated list of symbols, rather than a single symbol.

¶ Rather than populating a single tag, request() populates a vector of tags. The first tag represents the tag for the entire
subscription – if this tag is cancelled, every symbol in the bulk subscription will be cancelled. The following tags are the tags for
the individual symbols in the same order they were provided to RT_Request. These may be cancelled individually if the
subscription is no longer desired.

Beyond these differences the bulk interface acts identically to the standard interface. Whenever a message is received for any of the
symbols in the bulk subscription, the callback specified to request() will be called. The tag that is used in the callback is the tag of the
individual symbol, not of the bulk subscription as a whole.

See the BulkWinQuote sample utility for an example of how the bulk interface is used.

3.3.7 Canceling Requests

Applications cancel the request using the tag given at the time of request. Applications can cancel the tag at any time (even before
receiving the first message). Once the application returns from the cancel() method, the callback function for the request identified
by that tag will NEVER be called13. This guarantee simplifies programming by allowing the application to clean up resources used for
callback processing immediately after the call to FDF::cancel(). This cleanup is typically done in destructors, but that does not have
to be the case.

Once a tag is cancelled the integer identifier can be reused. This is typical, and it is common for the next request to be given the exact
r`ld s`f `r ` oqduhntrkx b`mbdkkdc rsqd`l- Gnvdudq+ sghr ®mdv s`f¯ hcdmshehdr ` ®mdv rsqd`l-¯ Sgd @OH ft`q`msddr sg`s ldrr`ges
from the previous stream cannot be delivered to this new stream.

13 If the callback is registered by more than one stream, only the stream identified by the tag is affected by a call to cancel(). Streams are allowed to share callbacks, and
canceling a stream will only prevent the callback from being used in the context of the cancelled tag.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

32

3.4 Processing Events

3.4.1 Normal Dispatching

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 // make a request (see previous code)

 // dispatch messages

 while (true) {

 FDF:: dispatch (- 1);

 }

}

In order to dispatch messages to the appropriate callbacks, control must be handed back to the API. This is accomplished by calling

FDF:: dispatch (é). This method will flush all of the currently queued messages and return.

The above code calls dispatch(-1) in an infinite loop. Passing -1 as a parameter will inform dispatch to wait indefinitely for events to
dispatch. However, the function will still return if at least a single callback was invoked. This is why the example code calls dispatch
in a loop.

Reponses from the FactSet Data Server are treated as events. These events are delivered via the callback that was setup at the time
of request. If the application wants to prevent blocking indefinitely, they can pass in a time value in milliseconds. A time value of
zero will flush all messages and return immediately. For more information on dispatch () , see section 4.6.1 RT_Consumer Class.

3.4.2 Handling Errors

Dispatch can return two errors: RT_E_NO_CONN and RT_E_SHUTDOWN. The RT_E_SHUTDOWN is a serious error and may be due
to the application deleting the RT_Consumer object, invoking disconnect(), or not handling a TERMINATE14 control message. The
only other reason dispatch can return RT_E_SHUTDOWN is if the application never issued a successful connect() in the first place.

× As long as the application issues a successful connect() and NEVER deletes the underlying RT_Consumer object,
dispatch() will never return RT_E_SHUTDOWN.

The RT_E_NO_CONN error is returned when the server or network disconnects the TCP connection to the API. This error is not as
serious as RT_E_SHUTDOWN. As long as the API was once connected (via a successful call to connect()), the API will retry the
connection every so often. Applications are encouraged to maintain the event loop during this time period, however, they can
disconnect if they choose to do so.

14 A TERMINATE control message is only given when an application issues an asynchronous connect, and the server failed to authenticate based on the user credentials given
in set_connection_info().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

33

3.4.3 Integrating with a SelectLoop or XtWindows Loop

#include <iostream> // include all system header files

#ifdef WIN32

#include <winsock2.h> // needed for select() on Windows

#include <windows.h>

#else

#include <sys/select.h> // needed for select() on Unix

#endif

#include "FDS/rt_api.h" // API header files

using namespace std;

using namespace FDS;

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 // make requests (see previous code)

 int api_fd;

 int select_max = 0;

 fd_set read_fds;

 rt_errno nerr = FDF::get_notify_socket(&api_fd);

 if (nerr) { cerr << "No resource: " << nerr << endl; return (int)nerr; }

 // need to reset the select max descriptor

 if (api_fd > select_max) select_max = api_fd;

 while (true) {

 FD_ZERO(&read_fds);

 //FD_SET(é); // set other app descriptors

 FD_SET(api_fd, &read_fds); // monitor the API socket for read

 int ndesc = select(select_max + 1, &read_fds, NULL, NULL, NULL);

 if (ndesc < 0) continue ; // handle errors

 // check the API socket descriptor

 if (ndesc && FD_ISSET(api_fd, &read_fds))

 // the API wants to dispatch messages, call it with a 0 timeout

 FDF::dispatch(0);

 // handle other descriptors

 }

}

Many socket-server and XWindows applications are not able to call dispatch() in an infinite loop. Instead, they either need to
manage a select loop or call XtAppMainLoop(). The API supports integration with these types of applications by supporting a
standard socket descriptor that will be read-ready when dispatch() needs to be called. This descriptor is obtained via the call to
FDF::get_notify_socket(). The example code above shows integration with a standard select loop. To integrate with an XtWindows
loop, applications should use XtAppAddInput() and pass in the descriptor received from get_notify_socket().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

34

3.4.4 Integrating with a Windows Loop Using WSAAsyncSelect

WSAAsyncSelect() is a Windows system call that allows a Windows message to be delivered based on events of interest from a
standard socket descriptor. The prototype for this call is as follows:

int WSAAsyncSelect(Socket s, HWND hWnd, unsigned int wMsg, long lEvent)

Applications can pass the descriptor obtained from get_notify_socket() into first parameter of the WSAAsyncSelect() function along
with the handle to a window, a user-defined windows message, and the read-ready event (FD_READ). Windows will in turn deliver
windows messages to the window when the descriptor is read-ready. Application should call dispatch(0) from the windows
procedure that handles the user-defined message.

3.4.5 Integrating with Windows Using create_mswin_dispatch_window()

Using WSAAsyncSelect() to integrate with the Windows event loop can be tedious and prone to error. The API can setup all the
plumbing on behalf of the application with a call to create_mswin_dispatch_window(). This method will create a hidden window and
install a WSAAsyncSelect() notification to this window.

The thread that calls this function must be a GUI thread (i.e., it must have a GUI event loop). Furthermore, this thread will be the
context in which all callbacks are executed. In other words, all callbacks will be executed by the thread that calls
create_mswin_dispatch_window().

Once this call has successfully returned, the application does not have to make any calls to any other event handling function such as
dispatch(). All callbacks will seamlessly be delivered during normal GUI processing.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

35

3.5 Processing the Messages

3.5.1 FID Value Pairs

The API makes heavy use of the widely accepted standard of representing data as field/value pairs. This self-describing data
structure tags all data elements with an integer identifier (FID or field identifier).

The value is typically some opaque binary data and its associated size. Every field/value pair has an agreed-upon meaning by both
the data sources and the consuming applications. This meaning can never be changed once published to the applications.
Furthermore, the values are rarely null-terminated. This allows data values to contain binary data. Applications should never
assume null-terminated field values, unless the publishing data-source makes this guarantee.

3.5.2 Field Identifiers

The current field identifiers are available in two files. The first is a standard C++ include file named rt_fields.h. This file defines
human-readable static constant integers for the current list of known field ids. This is the usual method of identifying a field by name
in actual C++ code.

The second file is rt_fields.xml (also included in the toolkit). This file can be loaded by the RT_FieldMap class and allows applications
to translate human readable names to field ids at runtime (as opposed to compile time using the rt_fields.h file).

3.5.3 Messages

All requests open a stream, which is a virtual tunnel of messages. A message has certain properties such as a type, permissions, a
key, and some other flags. Message data is contained in the RT_Message class.

An RT_Message is simply a container of fields (i.e., fids and values). The fields can be extracted using the member functions defined
in the RT_Message class (see section 4.3.3 RT_Message Class for more information).

3.5.4 Records

To assist applications with managing the state of an open stream, a fully cached and updated record is available during callback
processing. The interface closely resembles that of a message. For more information, see section 4.4.1 RT_Record Class.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

36

3.5.5 Processing a Message Example

#include <iostream> // include all system header files

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

using namespace std; // for convenience

using namespace FDS; // for convenience

void on_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 // if the server closed the stream close our side as well

 if (msg - >is_closed()) { FDF::cancel(tag); }

 if (msg - >is_error()) {

 cout << "Error: " << msg - >get_error_description() << endl;

 return ;

 }

 string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();

 string bid = rec - >get(FIDS::BID_1).to_string();

 string ask = rec - >get(FIDS::ASK_1).to_string();

 cout << "Update: " << msg_type << " Bid: " << bid

 << " Ask: " << ask << endl;

}

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 int tag;

 RT_Request req("FDS1", "FDS - USA");

 FDF::request(req, on_message, NULL, &tag);

 cout << "made a request for " << req << " tag=" << tag << endl;

 // dispatch messages

 while (true)

 FDF::dispatch(- 1);

}

The example code above shows one way to process a message from a callback. The callback function simply prints the message type
along with the bid and ask. In addition, it checks to see if the stream was closed, and if so, it closes the client-side stream by
canceling the tag.

The server may close the stream at any time. In addition, error messages (like RT_E_NOT_FOUND) will cause the stream to set the
close/end-of-stream indicator. The example callback handles both of these conditions.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

37

3.6 Threading

3.6.1 Thread-safe Classes

The only two classes that are completely thread-safe are the RT_Consumer and FDF classes. These classes manage the requests,
cancels, and the connection to the FactSet Data Server. Applications are free to call the methods of both the RT_Consumer and FDF
class using multiple threads.

 3.6.2 Thread-unsafe Classes

The remaining classes are thread-unsafe. The reason is that these classes tend to be used by a single thread at a time. The
RT_Request, RT_Message, and RT_Record are all container classes that are usually used by a single thread. Applications should
provide their own locking if these objects need to be shared by multiple threads.

3.6.3 Class-thread-safe

Multiple threads are allowed to access different objects of the same class without locking. Creation and destruction of objects are also
thread-safe. This is known as being class-thread-safe. All API classes are class-thread-safe.

× Applications must link with a thread-safe runtime library.

3.6.4 Read-only Objects

In many cases, objects are used in a read-only manner after a one-time initialization. If only const member functions are being
called, multiple threads may use the object at the same time.

× The RT_FieldMap class is not thread-safe, but the get_default() static method returns a const pointer to a single
object. Therefore, as long as this default instance is always used via the get_default() method, its methods are thread-
safe.

3.6.5 Threading Issues Using a Callback-driven API

A potential for deadlock exists when:

¶ The application uses more than one thread (not counting the API threads).

¶ More than one application thread uses the same RT_Consumer object.

× The FDF class is implemented using a single default RT_Consumer object. Therefore, if more than one application
thread use the FDF class, this condition is true.

¶ The callback routine needs to lock a shared object that is used by another application thread which also shares the same
RT_Consumer object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

38

OR

The callback routine needs to wait on a thread that uses the same RT_Consumer object.

If all of the above statements hold true, applications need to be aware of two potential deadlock scenarios as described in the next
section.

3.6.6 Avoiding Deadlock

The RT_Consumer class is thread-safe, but must also call back into the user application during the dispatch() routine. Furthermore,
the API is fully reentrant, and a callback routine is permitted to call additional API methods. To prevent a race condition in which
one thread cancels a subscription right before the callback routine is about to execute, the API must hold a lock during the callback to
ensure that a cancel for that stream is held until the callback is finished15. Due to this scenario, it is possible for the application to
deadlock. Care must be taken when in the callback routine. Callbacks should not block on other threads that need access to
the API (i.e., use a thread-pool where the thread-pool uses API functions on the same object).

Furthermore, callbacks that need to lock a mutex, critical section, semaphore, etc., should be careful of the locking order. For
example, the following sequence of two application threads may cause a deadlock:

Callback Thread(1) Application Thread(2)
Locks Object XXX

// some processing

// é.

Unlocks Object XXX

return

Locks Object XXX

// some processing

// calls an RT_Consumer:: method

Unlocks Object XXX

// é

Since the application thread(#2) is locking object XXX and then calling an RT_Consumer method, its locking order is defined as:

1. Lock object XXX

2. Lock the RT_Consumer object (implicit from the method call)

3. Unlock RT_Consumer object (implicit from the return of the method call)

4. Unlock object XXX

Gnvdudq+ sgd b`kka`bj sgqd`c'"0(r knbjhmf nqcdq hr sgdfollowing:

1. Lock the RT_Consumer object (implicit from dispatch)

2. Lock object XXX

3. Unlock object XXX

4. Unlock the RT_Consumer object (implicit from dispatch)

Since two threads lock the same objects in different orders, deadlock is possible. To eliminate the deadlock, the sequence should be
changed to the following:

15 The API guarantees that upon returning from cancel(), no additional callbacks on the closed stream are possible (see section 3.3.2 Closing the Stream for more
information).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

39

Callback Thread(1) Application Thread(2)
Locks Object XXX

// some processing

// é.

Unlocks Object XXX

return

consumer.RT_Consumer::lock()

Locks Object XXX

// calls an RT_Consumer:: method

Unlocks Object XXX

consumer.RT_Consumer::unlock()

The fix involved adding explicit calls to RT_Consumer::lock() and unlock() in the second application thread (i.e., non-callback thread).
It is safe for a thread to call an API routine if a lock is already held.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

40

Chapter 4 API Class Reference

4.1 API Constants

4.1.1 Error Codes

All errors within the API are conveyed to the application via the Enumeration FDS:: rt_errno . The list of possible errors is noted

below. API methods that need to return error information will do so using the rt_errno enumeration.

× The FactSet API does not throw standard or non-standard exceptions. However, the underlying system libraries may
throw exceptions such as std::bad_alloc.

// include file: ñFDS/rt_errno.hò

namespace FDS {

enum rt_errno {

 RT_NO_ERROR = 0, // All is good...

 RT_E_START = - 50, // Start of RT errors

 RT_E_UNKNOWN = - 51, // Unknown error

 RT_E_NO_SERV = - 52, // No Service Available

 RT_E_NOT_FOUND = - 53, // Field, or Record not found

 RT_E_RENAME = - 54, // Record has been renamed

 RT_E_TIMEDOUT = - 55, // Operation Timed Out

 RT_E_EXISTS = - 56, // Already exists

 RT_E_LIMIT = - 57, // Maximum application limit has been reached

 RT_E_PROTOCOL = - 58, // Any Protocol error (message, file format, network)

 RT_E_INVAL = - 59, // Invalid parameter to method call

 RT_E_RESOURCE = - 60, // Operating system resource exhausted

 RT_E_NO_CONN = - 61, // No connection to the server

 RT_E_VERSION = - 62, // Incorrect versi on

 RT_E_SHUTDOWN = - 63, // User has shutdown the system

 RT_E_ACCESS = - 64, // Permission denied

 RT_E_END = - 65 // End of RT errors

};

} // namespace

4.1.2 Field Identifiers

Field identifiers are integers that can be used to index into either the RT_Message or the RT_Record objects. The list of field

identifiers is available programmatically in the include file: ®ECR.qs^ehdkcr-g¯ @ookhb`shnmr sg`s mddc sn qdedqdmbd ehdkcidentifiers by
a symbolic name can do so by including this field identifier file.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

41

4.2 Requests

API requests are made using the RT_Request class. An RT_Request is a simple container class for the type of request, the

service for which the request is destined, and the key identifying a record within a particular service.

// include file: ñFDS/RT_Request.hò

namespace FDS {

class RT_Request // FDS namespace

{

 enum ReqType {

 REQUEST_TYPE_WATCH = 1,

 REQUEST_TYPE_SNAP = 2,

 REQUEST_TYPE_CANCEL = 3,

 };

 enum SymbolType {

 SYMBOL_TYPE_UNKNOWN = 0,

 SYMBOL_TYPE_NATIVE = 1,

 SYMBOL_TYPE_CUSIP = 2,

 SYMBOL_TYPE_ISIN = 3,

 SYMBOL_TYPE_SEDOL = 4

 };

 // Takes null - terminated character strings

 RT_Request (const char *service, const char *key,

 bool snapshot_only = false ,

 RT_Request::SymbolType symbol_type = SYMBOL_TYPE_UNKNOWN,

 const char *options = NULL, const char *auth_token = NULL);

 // Takes null - terminated character strings

 RT_Request& set_service (const char *service);

 RT_Request& set_key (const char *key);

 RT_Request& set_options (const char *options);

 RT_Request& set_snapshot (bool snapshot_only);

 RT_Request& set_s ymbol_type (SymbolType type);

 // Returns null - terminated character strings, len is an optional out param

 const char * get_service (int *len = NULL) const ;

 const char * get_key (int *len = NULL) const ;

 const char * get_options (int *len = NULL) const ;

 bool is_snapshot () const ;

};

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

42

4.2.1 RT_Request Class

#include ñFDS/RT_Request.hò // namespace: FDS

Object Creation, Destruction, and Lifetime

ü RT_Request();

ü RT_Request(const RT_Request &other);

ü RT_Request(const char *service, const char *key, bool snapshot_only,

 RT_Request::SymbolType symbol_type, const char *options,

 const char *auth_token);

ü ~RT_Request();

The RT_Request object lifetime is controlled by its creator (usually the application itself). The API simply accepts const references to
these objects. In most cases, this class is instantiated on the stack by the application. However, applications are free to create and
destroy these objects in any manner they see fit.

Example

FDS::RT_Requ est request(ñFDS1ò, ñFDS-USAò);

Sgd `anud dw`lokd bqd`sdr `m QS^Qdptdrs naidbs sg`s b`m ad trdc sn qdptdrs sgd rxlank ®ECR-TR@¯ eqnl sgd rdquhbd ®ECR0-¯ Rhmbd
the snapshot only flag is set to false (the default value), this request will initiate a stream of updates. The options and

auth_token parameters are not used and thus passed NULL pointers.

RT_Request Interface

The following setter functions are used to set the properties of the RT_Request class, namely the snapshot flag, service, and key.
Options and auth_token are not currently used. They should be set to NULL. The set functions will return references to the current
object allowing multiple set function calls to be daisy chained. All strings passed into the set functions should be explicitly null-
terminated.

ü RT_Request& set_snapshot(bool snapshot_only)

ü RT_Request& set_service(const char *service)

ü RT_Request& set_key(const char *key)

ü RT_Request& set_options(const char *options)

The following getter functions are used to query the current properties of the RT_Request class. The get functions return a null-
terminated string. The lifetime of this returned pointer expires whenever any non-const member function is called (like a set
function), or the object is destroyed. The length of the string can be optionally returned if the user passes in a valid pointer to an
integer. If the user does not need the length of the string, the user is allowed to pass in NULL.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

43

ü const char *get_service(int *len = NULL) – returns the service as a null-terminated string.
ü const char *get_key(int *len = NULL) – returns the key as a null-terminated string.
ü const char *get_options(int *len = NULL) – returns the options string as a null-terminated string.
ü bool is_snapshot() – returns true if the request is for a snapshot (i.e., the stream closes on first message).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

44

4.3 FID Fields and Messages

The RT_Message class is the class which represents all messages in the system. The API delivers RT_Message references to

client callback routines. This class contains information applicable to all messages. For example, messages will have a key, message
flags, message state, and may also have associated permission information and/or an error condition. Messages also contain a
collection of RT_FidFields.

4.3.1 FID Fields

 A FID field is data that is identified by an integer. The data is opaque (i.e., binary data with a size), but in most cases hsr oqhms`akd
ASCII characters.

× FID data values are typically NOT null-terminated.

// include file: ñFDS/RT_Field.hò and ñFDS/RT_FidField.hò

namespace FDS {

struct RT_Field

{

 const char * ptr ;

 int size ;

 std::string to_string () const;

 int to_int () const;

 unsigned int to_uint () const;

 double to_double () const;

 int64_t to_int64() const;

 uint64_t to_uint64() const;

 operator bool () const;

 bool empty () const;

};

struct RT_FidField

{

 int fid ;

 RT_Field data ;

};

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

45

RT_Field and RT_FidField Interface

ü RT_Field::ptr - points to the actual data value. The data is NOT null-terminated.
ü RT_Field::size - is the size of the actual data field in bytes. The data size cannot exceed 255 bytes.
ü RT_Field::to_string() - returns a std::string representation of the data.
ü RT_Field::to_int() - returns a signed integer representation of data.
ü RT_Field::to_uint() - returns an unsigned integer representation.
ü RT_Field::to_double() - returns a double representation.
ü RT_Field::to_int64() - returns a signed 64 bit integer representation
ü RT_Field::to_uint64() - returns an unsigned 64 bit integer representation
ü RT_Field::empty() - returns true if the ptr is null or the size of the data is zero.
ü RT_Field::bool() - allows applications to use RT_Field’s inside boolean expressions. This expression will return true if the

ptr is NOT null (meaning that the FID exists)
ü RT_FidField::fid - is the numeric field identifier.
ü RT_FidField::data - represents the data for this field identifier.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

46

4.3.2 Messages

// include file: ñFDS/RT_Message.hò

namespace FDS {

class RT_Message // FDS namespace

{

 // get functions return a null - terminated string, len is an optional out param

 const char * get_key (int *key_len = NULL) const ;

 const char * get_stale_reason (int *rsn_len = NULL) const ;

 const char * get_error_description (int *desc_len = NULL) const ;

 rt_errno get_error () const ;

 bool is_response () const ;

 bool is_update () const ;

 bool is_stale () const ;

 bool is_error () const ;

 bool is_closed () const ;

 // Doesn't return a null - terminated pointer, MUST pass in a pointer for len

 const char * get (int fid, int *val_len) const ;

 RT_Field get (int fid) const ;

 class const_iterator ; // Acts like a pointer to a RT_FidField

 const_iterator begin () const ;

 const_iterator end () const ;

 // Doesn't return a null - terminated pointer, MUST pass in a pointer for len

 const char * get_by_idx (int idx, int *fid, int *val_len) const ;

 RT_FidField get_by_idx (int idx) const ;

 int count () const ;

 bool exists (int fid) const ;

 bool empty () const ;

 // value must be null - terminated string

 rt_errno set (int fid, const char *value);

 // value does not have to be null - terminated, but if so

 // value_len should not include NULL termination in its calculation

 rt_errno set (int fid, const char *value, int value_len);

 rt_errno set (int fid, const RT_Field &fld);

 rt_errno set (const RT_FidField &fld);

 // value must be null - terminated string

 rt_errno append (int fid, const char *value);

 // value does not have to be null - terminated, but if so

 // value_len should not include NULL termination in its calculation

 rt_errno append (int fid, const char *value, int val_len);

 rt_errno append (int fid, const RT_Field &fld);

 rt_errno append (const RT_FidField &fld);

 void erase (int fid); // erases a fid

 void clear (); // erases all fids

 // methods to marshal/un marshal to and from a binary stream

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

47

 unsigned int size () const ;

 rt_errno serialize (void *dest, unsigned int *bytes_written) const ;

 rt_errno deserialize (const void *source, unsigned int src_size); };

} // namespace

4.3.3 RT_Message Class

#include ñFDS/RT_Message.hò // namespace: FDS

Object Crea tion, Destruction, and Lifetim

The RT_Message class is can be created by applications. In this case, the lifetime of these objects are strictly managed by the

creator. Typically, applications will be given pointers to RT_Message objects as callback parameters. These objects are owned by the
API and their lifetime is valid during the callback routine only. If applications wish to extend the lifetime, they should make copies of
the object using the copy constructor provided.

RT_Message Interface

The following methods allow the application to query various pieces of information. As with the RT_Request methods the get
methods will return a null-terminated string. The lifetime of this returned pointer expires whenever any non-const member function
is called (like a set function), or the object is destroyed. The length of the string can be optionally returned if the user passes in a
valid pointer to an integer. If the user does not need the length of the string, the user is allowed to pass in NULL.

ü const char *get_key(int *key_len = NULL) - returns a null-terminated string.
ü const char *get_stale_reason(int *rsn_len = NULL) - returns a null-terminated string. Should be used if

the message is stale (i.e. is_stale() returns true).
ü rt_errno get_error() - returns the error code of an error message. For a complete list of possible errors see Appendix

B.
ü const char *get_error_description(int *descr_len = NULL) - returns a null-terminated string.
ü bool is_stale() - returns true for stale messages.
ü bool is_error() - returns true for error messages.
ü bool is_closed() - returns true when the stream is closed.
ü bool is_response() - returns true for the initial message.
ü bool is_update() - returns true if the message is an update to an initial message (opposite of is_response()).

The following methods allow for manipulation of the FID field data:

ü rt_errno set(int fid, const char *value) – sets the field with the value specified. Value should be null-
terminated.

ü rt_errno set(int fid, const char *value, int value_len) – sets the fid with the value specified. Value
does not have to be null-terminated. value_len should be the length of the value minus any null-termination.

ü rt_errno set(int fid, const RT_Field &field) – sets the fid passed in to the data from field.
ü rt_errno set(const RT_FidField &field) – sets the field specified in RT_FidField in the message.

The set'£(methods listed above set data values identified by the integer (field identifier or FID). These methods will overwrite
existing values. If the FIDs do not exist, the fields are appended to the message. The maximum value size allowed is 255 bytes.
Longer values will be truncated. The maximum number of fields in a message is also 255. These functions will return RT_E_LIMIT if
the maximum of 255 fields has been reached.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

48

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

49

× When using set with either an RT_Field or const char *value, the API uses memcpy() as opposed to memmove().
Memcpy() does not handle overlapping regions of memory, so it is important that applications avoid using a pointer
from a call to get(int fid), where the fid being set() is the same as the one returned from get().

ü rt_errno appe nd(int fid, const char *value) – appends the field with the value specified to the message.

Value should be null-terminated.
ü rt_errno append(int fid, const char *value, int value_len) – appends the fid with value to the

message. Value does not have to be null-terminated. value_len should be the length of the value minus any null-termination.
ü rt_errno append(int fid, const RT_Field &field) – appends the fid with the value specified in field to the

message.
ü rt_errno append(const RT_FidField &field) – appends the field specified in RT_FidField to the message
ü

The append'£(methods listed above will add the fields to the end of the message. There is no checking to see if the field exists
before appending the data, therefore these functions do allow duplicate field identifiers to be appended.

The get functions allow the user to extract fields identified by an integer FID.

ü const char *get(int fid, int *value_len) - returns the pointer to the field data. The data is NOT null-

terminated. This function will return the size of the data in the area pointed by value_size. Applications must specify a valid
pointer. If the FID is not found, NULL is returned with a value_size of zero.

× Hs hr onrrhakd enq fds'£(sn qdstqm ` u`khc onhmsdq+ ats ` ydqn rhyd- Sghr ld`mrthat the field is present, but the data
is empty. In this case, it is invalid to de-reference the pointer returned.

RT_Field get(int fid) - returns an RT_Field struct.

Methods to query field information:

ü bool empty() - returns true if there are no fids in the message.
ü bool exists(int fid) - returns true if the FID exists in the message.
ü int count() - returns the number of fids in the message.
ü const char *get_by_idx(int idx, int *fid, int *val_len) - gets the field at a particular index. The

index is zero-based to a maximum value of the count() – 1.
RT_FidField get_by_idx(int idx) - same as the previous get_by_idx(…), but the value is returned via the RT_FidField
strucuture (see section 4.3.1 FID Fields for more information).

Methods to manipulate field information:

ü void erase(int fid) - erases the FID from the message.
ü void clear() - clears all the FIDs from the message.

Methods to support stl style iteration:

ü const_iterator begin() - returns the beginning iterator.
ü const_iterator end() - returns the end iterator.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

50

A const_iterator acts like a pointer to a const RT_FidField class.

Example:

 RT_Message msg;

 msg.set(1, "test", 4);

 msg.set(2, "me", 2);

 for (RT_Message::const_iterator it = msg.begin(); it != msg.end(); ++it)

 cout << "Field id=" << it - >fid

 << " val=" << it - >data.to_string() << endl;

The following methods support marshalling and unmarshalling of RT_Message objects to and from a binary stream:

ü unsigned int size() - returns the size needed to serialize the representation to bytes.
ü rt_errno serialize(void *destination, unsigned int *bytes_written) - serializes the state to the

byte stream pointed to by destination. The number of bytes written will be copied to the area pointed to by bytes_written. This
function will always return RT_NO_ERROR.

ü rt_errno deserialize(const void *source_data, unsigned int src_size) - deserializes the byte
stream from the area pointed to by source_data of src_size. The function can return RT_E_INVAL if an argument is invalid or
RT_E_PROTOCOL if there is a problem with the byte stream.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

51

4.4 Records

The API supports internal caching of certain types of records. This allows applications to reduce the amount of state needed to keep
up-to-date. The RT_Record is the class which represents all records in the system.

// include file: ñFDS/RT_Record.hò

namespace FDS {

class RT_Record

{

 // Doesn't return a null - terminated string

 // MUST pass in a pointer for len

 const char * get_key (int *key_size) const ;

 RT_Field get_key () const ;

 // Doesn't return a null - terminated pointer

 // MUST pass in a pointer for len

 const char * get (int fid, int *value_size) const ;

 RT_Field get (int fid) const ;

 class const_iterator ; // Acts like a pointer to an RT_FidField

 const_iterator begin () const ;

 const_iterator end () const ;

 // Doesn't return a null - terminated pointer

 // MUST pass in a pointer for len

 const char * get_by_idx (int idx, int *fid, int *val_size) const ;

 RT_FidField get_by_idx (int idx) const ;

 int count () const ;

 bool exists (int fid) const ;

 bool empty () const ;

 bool is_stale () const ;

 bool is_permissioned () const ;

 // Doesn't return a null - terminated pointer

 // MUST pass in a pointer for len

 const char * get_permissions (int *perms_size) const ;

 RT_Field get_permissions () const ;

 // Doesn't return a null - terminated pointer

 // MUST pass in a pointer for len

 const char * get_stale_reason (int *rsn_size) const ;

 RT_Field get_stale_reason () const ;

};

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

52

4.4.1 RT_Record Class

#include “FDS/RT_Record.h” // namespace: FDS

The RT_Record class is given to the application as a callback parameter. Applications can use this interface to gain access to fields

that have not changed and thus may not be in the RT_Message object. This object represents the current state of the record after the
current update message has been applied.

Object Creation, Destruction, and Lifetime

Applications should not create RT_Record classes. This object is passed as a callback parameter. The lifetime of this parameter is
valid during the callback routine only.

RT_Record Interface

The following methods allow the application to query various pieces of information. Two variants are available. The first returns a
RT_Field structure, and the const char * variant will return the data and size.

ü RT_Field get_key() – returns the key of the record in a RT_Field structure.
ü const char *get_key(int *key_size) – returns the actual pointer and size. Applications must pass in a a valid

pointer for key_size.

ü RT_Field get_permissions() – returns the permissions in a RT_Field structure.
ü const char *get_permissions(int *perms_size) – returns the actual pointer and size. Applications must

pass in a a valid pointer for perms_size.

ü RT_Field get_stale_reason() – returns the stale description in a RT_Field structure.
ü const char *get_stale_reason(int *rsn_size) – returns the actual pointer and size. Applications must pass

in a a valid pointer for rsn_size.

ü bool is_stale() - returns true for stale records.
ü bool is_permissioned() - returns true if the record has permissions set.

The get functions allow the user to extract fields identified by an integer fid.

ü const char *get(int fid, int *value _size) - returns the pointer to the field data. The data is NOT null-
terminated. This function will return the size of the data in the area pointed to by value_size. Applications must specify a valid
pointer. If the FID is not found, NULL is returned with a value_size set to zero.

× Hs hr onrrhakd enq fds'£(sn qdstqm ` u`khc onhmsdq+ ats ` ydqnsize. This means that the field is present, but the data
is empty. In this case, it is invalid to de-reference the pointer returned.

ü RT_Field get(int fid) – returns an RT_Field struct (see section 4.3.1 FID Fields for more information).
ü const char *get_by_idx(int idx, int *fid, int *val_size) – gets the field at a particular index. The

index is zero-based to a maximum value of the count() – 1.
ü RT_FidField get_by_idx(int idx) – same as the previous get_by_idx(…), but the value is returned via the

RT_FidField structure.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

53

Methods to query field information:

ü bool empty() - returns true if there are no fids in the record.
ü bool exists(int fid) - returns true if the FID exists in the record.
ü int count() - returns the number of fids in the record.

Methods to support stl style iteration:

ü const_iterator begin() - returns the beginning iterator.
ü const_iterator end() - returns the end iterator.

A const_iterator acts like a pointer to a RT_FidField class. The following example code uses the iterator concept to print the Message
and Record fields:

void on_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 cout << "Message Fields:" << endl;

 for (RT_Message::const_iterator it(msg - >begin()); it != msg - >end(); ++it)

 cout << " \ tField id=" << it - >fid

 << " val=" << it - >data.to_string() << endl;

 cout << "Record Fields:" << endl;

 for (RT_Record::const_iterator it(rec - >begin()); it != r ec - >end(); ++it)

 cout << " \ tField id=" << it - >fid

 << " val=" << it - >data.to_string() << endl;

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

54

4.5 Field Translation

Field ids are simple integers. However, these integers are typically managed by an associated human-readable name. The
RT_FieldMap class assists in translating names to ids and vice versa.

// include file: ñFDS/RT_FieldMap.hò

namespace FDS {

class RT_FieldMap

{

 static const int MAX_FIELD_NAME_SIZE = 128;

 static const int MAX_FIELD_NAME_DESCR = 256;

 enum FieldType {

 RT_NullType = 0,

 RT_CharType = 1,

 RT_StringType = 2,

 RT_IntegerType = 3,

 RT_PriceType = 4,

 RT_DecimalType = 5,

 RT_Reserved = 6,

 RT_Enumeration = 7,

 RT_DateType = 8,

 RT_TimeType = 9

 };

 // The factory methods allow the only way to create a RT_FieldMap object

 static RT_FieldMap * create (const char *filename, bool make_default= true);

 static void destroy (RT_FieldMap *map);

 // set_default will return the old default. Note: get_default returns

 // a const pointer, thus allowing the default map to be thread - safe.

 static RT_FieldMap * set_default (const RT_FieldMap *new_default_map);

 static const RT_FieldMap * get_default ();

 rt_errno append (const char * filename);

 const char * get_name (int fid, const char *default_if_not_found = "") const ;

 // All get_id(...)'s will return 0 if fid not found

 int get_id (const char *name) const ;

 int get_id (const char *name, FieldType *type) const ;

 // get_t ype() will return RT_NullType if fid is not found

 FieldType get_type (int fid) const ;

 unsigned int count () const ;

 const char * get_name_by_idx (unsigned int idx) const ;

 int get_id_by_idx (unsigned int idx) const ;

 FieldType get_type_by_idx (unsigned int idx) const ;

};

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

55

4.5.1 RT_FieldMap Class

#include “FDS/RT_FieldMap.h” // namespace: FDS

The RT_FieldMap class is available to applications for translating names to field ids and vice-versa. Translating FIDs to names

assists with debugging messages and records and also allows for human-readable configuration files. In essence, this class allows
names to be translated to numbers at run-time. If names are only required at compile time, this class is not needed, and instead the
`ookhb`shnm b`m itrs hmbktcd sgd ®ECR.qs^ehdkcr-g¯ gd`cdq ehkd-

Object Creation, Destruction, and Lifetime

Applications can create an QS^EhdkcL`o bk`rr trhmf sgd rs`shb etmbshnm QS^EhdkcL`o99bqd`sd'£(- Sghr vhkk bqd`sd `m QS^EhdkcL`o
object based on the filename specified as the parameter to create(). The file should adhere to the correct xml specification enq ` ehdkcr
file (see the FactSet Data Service Specification Document). A FieldMap file is supplied in the toolkit. The location is
®dsb.qs^ehdkcr-wlk¯- @ookhb`shnmr sg`s vhrg sn tshkhyd m`ld sq`mrk`shnm rgntkc kn`c sghr ehkd `s oqnfq`l rs`qsto-

Once the object is created, it is owned by the application. Applications may destroy the object anytime using the static member
function RT_FieldMap::destroy(). It is recommended that applications create an RT_FieldMap object during startup, and let the
operating system clean up the system memory resources during program shutdown.

RT_FieldMap Interface

The maximum field name size is given by the constant: MAX_FIELD_NAME_SIZE. In addition to each field having a name and

integer identifier, every field is associated with an application-defined data type. Since every field value is simply a pointer to some
opaque data along with the size of the data, applications need to know the type of the field as well. The enumeration FieldType lists
the possible field types. It is important to note that once a type is published for a specific field identifier, it will NEVER be changed.
Applications may make assumptions about the published type of the field at compile time. For a more detailed decription about each
type, see the FactSet Data Service Specification Document.

enum FieldType {

 RT_NullType = 0, // set for invalid field ids

 RT_CharType = 1, // value is a single character

 RT_StringType = 2, // value is a string

 RT_IntegerType = 3, // value is an integer (no units)

 RT_PriceType = 4, // value is a price (has units)

 RT_DecimalType = 5, // value is a general decimal (no units)

 RT_Enumeration = 7, // value is an Integer Enumeration

 RT_DateType = 8, // value follows the FactSet date specification

 RT_TimeType = 9 // value follows the FactSet time specification

};

ü static RT_FieldMap *create(const char *file, bool make_default=true);

ü static void destroy(RT_FieldMap *map);

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

56

The above functions can create and destroy RT_FieldMap objects. To create an RT_FieldMap object an xml file must be passed as an
argument. The create() functions will return NULL if the file could not be opened. The default argument of make_default is set to
true, which informs the create() function to remember the pointer of the newly created FieldMap object (using the
set_default_field_map() method, see below). To destroy a FieldMap object, pass the pointer to the object to the
RT_FieldMap::destroy() method. This function will also make sure the the internal default map file is cleared as well.

ü static RT_FieldMap *set_default(const RT_FieldMap *map);

ü static const RT_FieldMap *get_default();

The above methods get and set the default field map object. This object is used internally within the API for printing messages to a
std::ostream . By no means is it necessary to store a default field map file, but having one makes the API interfaces simpler. The

API will handle the case if the default field map is destroyed, by setting the default field map to NULL.

ü rt_errno append(const char *fil ename);

The ̀ oodmc'£(ldsgnc allow a current field map to append the fields from a given filename. This is useful if there are multiple xml
files to load. This function is a non-static member function.

ü const char *get_name(int fid, const char *default_if_not_found = ñò);

Sgd fds^m`ld'£(etmbshnm `kknvr sgd `ookhb`shnm sn fds sgd m`ld ne sgd ehdkc uh` hsr hmsdfdq hc- Sgd etmbshnm vhkk qdstqm `null-
terminated string. If the field id is not found, the method will return the second argument, default_if_not_found (which defaults to
the empty string). If applications want a return value of NULL in this case, they should pass in NULL as the second argument to the
fds^m`ld'£(ldsgnc-

ü int get_id(const char *name, FieldType *type = NULL);

ü FieldType get_type(int fid);

Sgd fds^hc'£(ldsgnc qdstqmr sgd hmsdfdq hcdmshehdq fhudm sgd ehdkc m`ld- Sgd o`q`ldsdq ltrs ad mtkk-terminated string. In
addition, if a valid pointer is passed as the second argument, this methods b`m qdstqm sgd ehdkc sxod- Sgd fds^sxod'£(ldsgnc vhkk
return the field type given its identifer. All these functions will return 0 (an invalid FID and type) if the field id is not found.

ü unsigned int count() - returns the number of fields in the map.
ü const char *get_name_by_idx(unsigned int index) - returns the name located at index (zero-based)
ü int get_id_by_idx(unsigned int index) - returns the field id located at index (zero-based).
ü FieldType get_type_by_idx(unsigned int index) - returns the field type located at index (zero-based).

The above functions are used to support iteration of all the fields within the FieldMap.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

57

4.6 RT_Consumer

The RT_Consumer class manages the connection to the FactSet Data Server. It is the class used to connect, request data, cancel
subscriptions, manage the event loop, and finally disconnect. This class is the heart of the FactSet Real-Time API.

// include file: ñFDS/RT_Consumer.hò

namespace FDS {

class RT_Consumer

{

 typedef void (* CtrlCB)(bool is_connected,

 const class RT_Message *msg, void *closure);

 typedef void (* MesgCB)(int tag, const class RT_Message *msg,

 const class RT_Record *rec, void *closure);

 void set_connection_ctrl_cb (RT_Consumer::CtrlCB cb, void *closure,

 void **old_closure = NULL);

 const char * get_connection_info (size_t *string_len = NULL);

 rt_errno set_connection_info (const char *connection_string_uri);

 rt_errno set_connection_info (const char *host_por t,

 const char *user, const char *passwd);

 rt_errno connect (bool async_connect = false);

 rt_errno disconnect (bool keep_registration = false);

 bool is_connected () const ;

 const char * get_connect ed_host () const ;

 rt_errno workstation_connect (const char *user, const char *passwd = "" ,

 bool async_connect = false);

 size_t get_services (class RT_Message *msg) const ;

 rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb,

 void *closure, int *tag);

 rt_errno cancel (int tag, void **closure = NULL);

 rt_errno get_notify_socket (int *notify_socket) const ;

 rt_errno create_mswin_dispatch_window ();

 rt_errno destroy_mswin_dispatch_window ();

 rt_errno dispatch (int max_wait_time_in_ms = 0);

 rt_errno lock () const ;

 rt_errno unlock () const ;

 static RT_Consumer & get_default ();

};

} // namespace

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

58

4.6.1 RT_Consumer Class

#include “FDS/RT_Consumer.h” // namespace: FDS

The RT_Consumer class manages the connection to the FactSet Data Server. Applications will use this object to open a connection

to the FactSet Data Server and request information. This class will manage all the subscriptions on behalf of the application.

Object Creation, Destruction, and Lifetime

Applications create and control the lifetime of RT_Consumer objects with the exception of the default RT_Consumer object. The
lifetime of this default object is controlled by the API. Applications should not destroy the default instance. This instance is
accessible via the RT_Consumer::get_default() static method. Applications that need only a single RT_Consumer should utilize the
default instance or use the FDF class instead (see section 4.7 The FDF Class Interface for more information).

RT_Consumer Interface

Defining the callback signatures

The application can receive two types of notifications via callbacks. This first type is a control notification:

ü typedef void (*CtrlCB)(bool is_connected, const RT_Message *msg, void *closure);

Applications that want to receive control messages should define a function with the above signature to receive these events. Control
notifications will typically indicate events such as Connected, Disconnected, Service Attachment, and so on. For a complete list of
control messages, see the Appendix located at the end of this document. The first parameter (is_connected), indicates if the

current connection is valid. The second RT_Message parameter has information such as the type of control notification. The final
parameter is the application-defined closure which was passed in when the callback was setup.

The second type of notification is for application messages to items requested:

ü typedef void (*MesgCB)(int tag, const class RT_Message *msg, const RT_Record

*rec, void *closure)

Applications should define the above function signature to receive messages for requests. The parameters are as follows:

¶ int tag - is the tag that was returned when the orginal request was made. It is the resource that identifies this stream, and is

needed to cancel the stream.
¶ RT_Message *msg - is the actual update (or initial) message from the server. A dynamic open stream will deliver a series of

messages. The initial message will contain all the available fields, and the updates will contain only those fields that need to be
changed.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

59

¶ RT_Record *rec - is the current cached record associated with the stream. It will contain ALL the fields, and is the current
state of the instrument (i.e., the message has been applied).

¶ void *closure - is an application-defined pointer passed in the orginal request.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

60

Registering for Control Messages

The application can install a single callback to receive control notifications. To set control notications applications should use the
following:

ü void set_connection_ctrl_cb(RT_Consumer::CtrlCB cb, void *closure, void

**old_closure = NULL)

This function will set a control callback. The application should pass in a pointer to a function that adheres to the
RT_Consumer::CtrlCB signature. The application should also pass in a closure argument (which can be NULL). In addition, the
previous closure argument can be returned.

Control messages are used to dynamically inform applications of various events such as the following:

Removal of a service ± When a service is removed and no longer available for requests, a control message will be sent to the
application.

Addition of a new service ± When a new service has attached and is ready to accept new connections a control message will be
sent to the application.

TCP connection termination ± When a connection socket is terminated (for any reason), a control message will be sent. The reason
for termination will be included in the control message.

TCP connection notification (for asynchronous connections) ± When the application is using asynchronous connections, the API
will deliver a CONNECTED control message upon a successful TCP connect.

For complete details on the type of control messages that can be received, as well how each one should be handled see Appendix C.

Setting the connection information

The following methods will set the connection information:

rt_errno set_connection_info(const char *connection_string_uri);

rt_errno set_connection_info(const char *host_port, const char *user, const char *passwd);

In order to connect to the FactSet Data Server, the application must set the host name (or IP address), the port number, the
username, and the information required to generate the One-time password. These items should be passed into the
set_connection_info() methods as parameters. The functions take null-terminated strings as input. The following outlines

some examples.

Using OTP

set_connection_info("api-stage.df.factset.com", "client", "AAAA", "5c706e...", "730332...", "C:\\Path\\To\\Counterfile", false) ±
Sgd @OH vhkk bnmmdbs sn sgd gnrs ®`oh-rs`fd-e`bsrds-bnl¯ nm sgd cde`tks onqs ne ®5570¯- Hs vhkktrd ` trdqm`ld ne ®bkhdms¯ `mc `
password generated by the key and counter.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

61

Using Basic Authentication

rds^bnmmdbshnm^hmen'®client:aaa@api-rs`fd-e`bsrds-bnl¯(± Sgd @OH vhkk bnmmdbs sn sgd gnrs ®`oh-rs`fd-e`bsrds-bnl¯ nm sgd cde`tks
onqs ne ®5570¯- Hs vhkk trd ` trdqm`ld ne ®client̄ `mc ` o`rrvnqc ne ®```¯-

rds^bnmmdbshnm^hmen'®client?0/-1-3-493/52¯(± The API will connect to the host 10.2.4.5 on port 4063 usimf sgd trdqm`ld ®client̄ -
The password is empty in this case.

set_connection_info(NULL) ± The API will use the global property RT_CONNECTION from the FDF class. The format of the
RT_CONNECTION string is explained in Appendix D and is identical to that of the previous examples (e.g. client@10.2.4.5:4063).

rds^bnmmdbshnm^hmen'®qdf9.GJDX^KNB@K^L@BGHMD.Rnesv`qd.E`bsRds.ECE¯(± The API will look for a property named
RT_CONNECTION in the Windows registry. The hive location is HKEY_LOCAL_MACHINE, and /Software/FactSet/FDF is the path
within the hive.

rds^bnmmdbshnm^hmen'®ehkd9.dsb.bnmmdbshnm^hmen-bef¯(± The API will look for a property named RT_CONNECTION in the file
/etc/connection_info.cfg. The format of this file is given in Appendix E.

Hs hr `krn onrrhakd sn rds ltkshokd bnmmdbshnm rsqhmfr `s nmbd ax bnmb`sdm`shmf d`bg rsqhmf+ rdo`q`sdc ax ` ohod '¬{(- Sgd eollowing is an
example.

rds^bnmmdbshnm^hmen'®client:aaa@api-stage.factset.com|client:aaa@api-stage2.factset.com̄ (± When multiple connection
strings are specified, the API will attempt to connect using each connection string, until a successful connection is made. If the
connection is subsequently lost, the API will continue trying to connecting using each connection string.

The set_connection_info() methods will only return an error if the host could not be extracted from the specified uri. It does not
check if the host is valid, or if the host can be translated to an actual IP address. It will simply store the connection information for
later use. The connect() method will later use this information to resolve the hostname and port before attempting the connection to
the FactSet Data Server.

Getting the connection information

The following method retrieves the connection information:

const char *get_connection_info(size_t *length = NULL);

This method will return a null-terminated string of the form USER:PASSWD@HOST:PORT. If a valid pointer for the length is passed
into this function, it will also return the length of this string (not including the null termination). The validity of the return value
expires upon the next call to get_connection_info().

× get_connection_info does NOT return the same string passed into set_connection_info(). The set_connection_info()
can take a URI resource. This resource can identify a file, registry location, or the connection string itself. Instead,
get_connection_info() returns the resolved user, password, host, and port information from the set_connection URI.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

62

Connecting to a FactSet server

ü rt_errno connect(bool async = false);

The connect() function connects the API to a FactSet server over an Internet or WAN connection. The connection info must be set by
calling the set_conneciton_info() function.

Connecting to a local FactSet workstation

ü rt_errno workstation_connect(const char *user, const char *passwd = ñò, bool async
= false);

The workstation_connect() function connects the API to the FactSet workstation program running on the current machine. In the
cde`tks bnmehftq`shnm+ sgd trdq o`q`ldsdq rgntkc ad sgd trdqm`ld `mc rdqh`k mtladq ne sgd bkhdms rdo`q`sdc ax ` c`rg 'd-f- ®TSER-
0123¯(`mc sgd o`rrvnqc rgntkc ad ` ak`mj rsqhmf- Hs hr mns mdbdrr`qx sn rds sgd bnmmdbshnm hmen vgdm trhmf she
workstation_connect() function.

This function is only supported in Windows and will fail if version 2011.1 of the FactSet workstation is not installed. If the FactSet
workstation program is not running, the workstation_connect() function will start it.

Asynchronous vs. synchronous connect calls

By default, connect() and workstation_connect() are synchronous operations, and thus, will block until a valid connection is
established. If the functions return without error, applications can assume that the connection is valid. If an error is returned, the
connection attempt has failed. Applications should retry the connect operation at sometime in the future or exit. Although
applications can issue requests before a successful connection, applications will NOT be able to call dispatch() (since dispatch() will
return RT_E_SHUTDOWN).

Applications that wish to connect asynchronously (i.e., non-blocking), should explicitly pass in true. When the async parameter is
set to true, the connect functions will return immediately. If an error is returned, the asynchronous connect has failed16. If an
asynchronous connection operation returns without error, the connection is in progress. A control callback will be invoked upon a
successful or unsuccessful connect.

× If connect() or workstation_connect() return an error, the connection will never get established. Applications must
issue a successful connect before dispatching any messages. This behaviour is true for both asynchronous and
synchronous connections.

16 Applications should exit if an async connect(true) operation fails. This is an unrecoverable, serious error.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

63

Errors

connect() can return the following errors:

Error Description

RT_E_VERSION Returned if the incorrect library is linked at compile time.

RT_E_INVAL

Returned if the application did not set the host and port using
set_connection_info().

RT_E_PROTOCOL Returned if the connection is not returning the valid protocol. This may
occur if the application attempts a TCP connect to some unknown server.

RT_E_ACCESS Returned if the username and/or password are invalid.

{System Errno} If the API could not resolve the host name, open the TCP connection, or
create the communication thread a system errno is returned. It is a positive
error number from the native platform.

workstation_connect() can return the following errors:

Error Description

RT_E_VERSION Returned if the incorrect library is linked at compile time.

RT_E_PROTOCOL Returned if the connection is not returning the valid protocol.

RT_E_ACCESS Returned if the username and/or password are invalid.

RT_E_RESOURCE Returned if the API is unable to communicate with the FactSet workstation.
This can occur if the proper version of the FactSet workstation isn’t installed
on the machine or the API is unable to start the workstation program.

{System Errno} If the API could not resolve the host name, open the TCP connection, or
create the communication thread a system errno is returned. It is a positive
error number from the native platform.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

64

Disconnecting and querying the connection status and available services

ü rt_errno disconnect(bool keep_registration = false)

Disconnect will tear down the TCP connection to the server. Applications can specify whether the internal subscriptions should also
be cleaned up. The default is to cancel all the subscriptions when the application issues a disconnect(). If the application wishes to
jddo sgd rtarbqhoshnmr+ sghr b`kk vhkk fdmdq`sd ®rs`kd¯ ldrr`fd b`kka`bjr sn `kk nodm rsqd`lr- Hm sghr b`rd+ sgd b`kka`bjr `re invoked
during the call to disconnect.

ü bool is_connected() const

is_connected() simply returns the status of the connection. It is possible that a network or server condition can cause a TCP
disconnect during normal operation. In this case, the API will attempt to retry the connection every so often. Immediately after a
disconnect all open streams will receive stale messages. When the connection is re-established the open streams will be notified (via
the callback) with the refreshed non-stale data.

ü const char *get_connected_host() const

get_connected_host() returns the hostname of the current connection. If there is no valid connection, it will return NULL. This is most
useful when multiple connection strings are specified in set_connection_info().

ü size_t get_services(class RT_Message *msg) const

get_services() retrieves all the available services (i.e., data sources). The fid FIDS::SERVICE_NAME is appended to the msg parameter
multiple times (one for each service available). The function returns the total number of available services.

Requesting and canceling data streams

ü rt_e rrno request(const class RT_Request &req, RT_Consumer::MesgCB cb,

void *closure, int *tag)

ü rt_errno cancel(int tag, void **closure = NULL)

request() and cancel() are the main entry points to open and close data streams. Applications call the request method to initiate a
stream. The request should be passed in via the RT_Request object (see section 4.2 Requests for more information). A callback
parameter and closure argument may also be passed into the API. The final parameter is the returned tag. This is the resource that
identifies the open stream. Leaking this tag will result in poor performance, and thus applications should manage this resource very
carefully. Applications should cancel the tag using the cancel() method. The cancel method also provides a mechanism to retrieve
the application-defined closure argument.

The request() function will ALWAYS return a resource tag (even if the method returns an error). For example, if the application
requests a service which is not known, the request will return an error of RT_NO_SERV. However, the request is still put in a queue,
and when the service is attached, the request will be sent. Also, it is possible to issue requests on a disconnected system. In this
case, request() returns RT_E_NO_CONN, however, the request will be sent as soon as the connection is established.

Every call to r equest() will generate a tag. The application is responsible for managing that tag. There are only two
ways to free the resource: using the cancel() method or calling disconnect() with the default parameter.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

65

Managing the event loop

Eventually applications will have to return control to the API so the API can dispatch the message and control callbacks. This is
accomplished by calling chro`sbg'£(

ü rt_errno dispatch(int max_wait_time_in_ms = 0)

This method will flush the events from an internal notification queue. If there are no events to dispatch, the dispatch () call can

wait for events by specifying the max_wait_time_in_ms parameter. This parameter is the maximum time-to-wait in milliseconds. A
negative wait time means wait indefinitely.

The dispatch () method will always return after flushing the notification queue. The application should call this function multiple

times either in a loop or in a system notification procedure. If a wait time is specified, and events are currently in queue, dispatch()
will flush the events (by calling the appropriate callback routines), and then return immediately. Dispatch() waits only if there are no
events to be dispatched.

Dispatch can return two errors: RT_E_NO_CONN and RT_E_SHUTDOWN. The RT_E_SHUTDOWN is a serious error and may be due
to the application deleting the RT_Consumer object, invoking disconnect(), or not handling a TERMINATE17 control message. The
only other reason dispatch can return RT_E_SHUTDOWN is if the application never issued a successful connect() in the first place.

× As long as the application issues a successful connect() and NEVER deletes the underlying RT_Consumer object,
dispatch() will never return RT_E_SHUTDOWN.

The RT_E_NO_CONN error is returned when the server or network disconnects the TCP connection to the API. This error is not as
serious as RT_E_SHUTDOWN. As long as the API was once connected (via a successful call to connect()), the API will retry the
connection every so often. Applications are encouraged to maintain the event loop during this time period, however, they can
disconnect if they choose to do so.

Although many applications can call dispatch () in a loop, many Windows or server-type applications will need to manage their

own event loop. This is usually accomplished by using the Microsoft Windows event loop and/or a select system call loop. The
following functions assist these types of applications with integration in both Windows and Select Loops.

ü rt_errno get_notify_socket(int *notify_socket)

ü rt_errno create_mswin_dispatch_window()

ü rt_errno destroy_mswin_dispatch_window()

The get _notify_socket() call returns an active socket descriptor that will become read-ready when there are events to

dispatch. Applications will need to add this descriptor to the select loop, and call dispatch () when this descriptor is read-ready.

The dispatch () will take care of turning the off the read-ready indicator for the next call to select.

17 A TERMINATE control message is only given when an application issues an asynchronous connect, and the server failed to authenticate based on the user credentials given
in set_connection_info().

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

66

This function can also be used by UNIX or Windows clients. Windows clients can then use this file descriptor as an argument to
WSAAsyncSelect(). This Windows system call will deliver a Windows message based on the events of a socket descriptor.

Although Windows clients can use get_notify_socket (), it is recommended that applications use the

create_mswin_dispatch_window() method. This convenience function will set up the WSAAsyncSelect on a hidden

window that is created within the API. This window will be created in the context of the thread that calls
create_mswin_dispatch_window() .

The thread that calls create_mswin_dispatch_window should be a Microsoft GUI thread, and therefore must have a GUI
Event Loop.

Once this call returns, all the callback routines will be called within the Windows GUI Event Loop. No call to dispatch () is

necessary. Furthermore, the callback routines will be called by the same thread that called
create_mswin_dispatch_window() . The destroy_mswin_dispatch_window() will destroy the hidden window.

These routines are only applicable for Windows applications. These functions will return RT_E_INVAL for Unix clients.

Locking/Unlocking

Since the RT_Consumer object is thread-safe and invokes application-defined callbacks, there is a potential for deadlock. For
complete details on this scenario, see section 3.6 Threading. In order to prevent deadlocks, applications may need to explicitly lock
the RT_Consumer object.

ü rt_errno lock() - locks the RT_Consumer object.
ü rt_errno unlock() - unlocks the RT_Consumer object.

Applications can issue multiple calls to lock() recursively, however, each call to lock() must be matched up with a call to unlock().
Currently, these functions can never fail (i.e., they will always return RT_NO_ERROR).

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

67

4.7 The FDF Class Interface

Since most applications will only need a single RT_Consumer, the class FDF is created as a convenience class. You can simply call the
static methods within the FDF class to get the required functionality and therefore, do not have to create and manage an
RT_Consumer object.

// include file: ñFDS/rt_api.hò

class FDF

{

 // Logging functions

 static rt_errno log_open (const char *file, bool append = false);

 static void log_close ();

 static RT_LogLevel log_level (RT_LogLevel new_level);

 static size_t log_set_max (size_t new_max_limit);

 static void log (RT_LogLevel severity, const char *msg, size_t size,

 const char *file, int line);

 // Property Management (for Configuration).

 static const size_t MAX_PROPERTY_SIZE = 256; // including NULL termination

 static size_t get_property (const char *name, char *dest,

 const char *def_val = NULL);

 static void set_property (const char *name, const char *value);

 static rt_errno load_properties (const char *uri, bool append = false);

 // Methods that call the default RT_Consumer

 static void set_connection_ctrl_cb (RT_Consumer::CtrlCB cb,

 void *closure, void **old_closure = NULL);

 static const char * get_connection_info (size_t *dest_sz = NULL);

 static rt_errno set_connection_info (const char *connection_string);

 static rt_errno set_connection_info (const char *host_port,

 const char *user,

 const char *passwd);

 static rt_errno connect (bool async_connect = false);

 static rt_errno disconnect (bool keep_registrations = false);

 static bool is_connected ();

 static const char * get_connect ed_host () const ;

 static rt_errno workstation_connect (const char *user, const char *passwd = "" ,

 bool async_connect = false);

 static rt_errno request (const class RT_Request &req, RT_Consumer::MesgCB cb,

 void *closure, int *tag);

 static rt_errno cancel (int tag, void **closure = NULL);

 static rt_errno dispatch (int max_wait_time_in_ms = 0);

 static rt_errno lock ();

 static rt_errno unlock ();

 static size_t get_services (RT_Message *msg);

 static rt_errno get_notify_socket (int *socket);

 static rt_errno cr eate_mswin_dispatch_window ();

 static rt_errno destroy_mswin_dispatch_window ();

};

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

68

4.7.1 FDF Class

#include “FDS/rt_api.h” // namespace: FDS

The FDF Class is a wrapper around the default object of an RT_Consumer. Applications that need only a single RT_Consumer should
use this convenience class.

Object Creation, Destruction, and Lifetime

The FDF class is similar to a Singleton except that all the methods are static. Applications can not create instances of this class. They
should simply use the static methods provided.

FDF Interface:

Methods supported by RT_Consumer::get_default()

ü static void set_connection_ctrl_cb(RT_Consumer::CtrlCB cb,void *closure, void

**old_closure = NULL);

ü static rt_errno set_connection_info(const char connect_str);

ü static rt_errno set_connection_info(const char *host_port,const char *user, const

char *passwd);

ü const char *get_connection_info(size_t *dest_sz = NULL);

ü static rt_errno connect(bool async = false);

ü static rt_errno disconnect(bool keep_registration = fals e);

ü static bool is_connected();

ü static const char *get_connected_host() const;

ü static rt_errno workstation_connect(const char *user, const char *passwd = ñò,bool
async = false);

ü static rt_errno request(const class RT_Request &req, RT_Consumer::MesgCB cb, void

*closure, int *tag);

ü static rt_errno cancel(int tag, void **closure = NULL);

ü static rt_errno get_notify_socket(int *notify_socket);

ü static rt_errno create_mswin_dispatch_window();

ü static rt_errno destroy_mswin_dispatch_window();

ü static rt_errno dispatch(int max_wait_time_ms = 0);

ü static rt_errno lock();

ü static rt_errno unlock();

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

69

The above methods are identical to the RT_Consumer interface methods. The only difference is these methods are static functions of
the FDF class. For a complete description of these methods, see section 4.6 RT_Consumer.

4.7.2 Logging Within and Outside the API

The API logs errors to standard error (cerr). However, applications can open an actual log file if they desire. The following methods
available from the FDF class assist with application logging.

ü static rt_errno log_open(const char *filename, bool append = false - opens a logfile named

by the parameter filename. If the file exists and the append parameter is set to false, the old file is moved to a filename with a
“.old” extension. All API log messages will now be logged to this file.

ü static void log_close() - closes the log file that was previously opened by log_open(). All log messages will now
be directed to standard error.

ü static size_t log_set_max(size_t new_limit) - by default the logfile will roll every 4MB. This method
allows the application to change the maximum log size. It returns the old size.

ü static RT_LogLevel log_level (RT_LogLevel new_level) - by default all levels are logged. Applications
can change the minimum level that will be logged. For example, a value of FDS::RT_LOG_ALL means that all levels will be logged,
and a value of FDS::RT_LOG_NONE means nothing will be logged. A value of RT_LOG_WARN will log all levels greater than or
equal to RT_LOG_WARN (i.e. WARN, ERROR, and PANIC). The following logging levels are supported:

enum FDS::RT_LogLevel {

 RT_LOG_ALL = 0,

 RT_LOG_DEBUG = 1,

 RT_LOG_INFO = 2,

 RT_LOG_WARN = 3,

 RT_LOG_ERROR = 4,

 RT_LOG_PANIC = 5,

 RT_LOG_NONE = 6

};

ü static void log(RT_LogLevel severity, const char *msg, size_t, const char *file,

int line) 18 - This method will allow any message of length size to be logged to the log file. The file and line numbers
should also be specified. Although applications can use this method to log messages to the log file, a more convenient way is to
use the below macros.

The following macros are defined in “FDS/rt_api.h” for application logging:

#define RT_LOG_RAW(msg) // Logs the raw message (no prepended text)

#define RT_LOG_INFO(msg) // Logs an Informational message

#define RT_LOG_WARN(msg) // Logs a warning

#define RT_LOG_ERROR(msg) // Logs an error

18 When running debug builds using Microsoft Visual Studio, log messages will also be sent to the Output window.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

70

#define RT_LOG_PANIC(msg) // Logs a panic message and aborts the application

The msg parameter should be a C++ operator<< expression. Example Code:

void on_message1(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 RT_LOG_INFO("Please log this message");

 RT_LOG_WARN("Please log this integer: " << tag);

 RT_LOG_ERROR("Message: " << *msg);

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

71

4.7.3 Configuration Management

@kk `ookhb`shnmr mddc sn ®rnes-bncd¯ bdqs`hm `ookhb`shnm rdsshmfr- Enq dw`lokd sgd gnrsm`ld enq sgd E`bsRds C`s` Rdqudq rgntkc ad
stored in some configuration file or system registry. The API includes functionality to help manage application configuration files.

ü size_t get_property(const char *name, char *dest, const char *def_val) – This method call

will look up a property name and fill in “dest ” with the associated value. The maximum size of a property value is
MAX_PROPERTY_SIZE which is currently set to 256. Therefore, applications can simply declare a buffer on the stack to accept
the property value. If the property is not found, the function will string copy the def_val into the destination pointer. Applications
can set the default value to NULL. In this case, the API will write a single null-termination to dest. The return value of get_property()
is the length of the property value not including any null-termination character.

ü void set_property(const char *name, const char *value) – This will set a property value given by name
to a contents of value. The value parameter must be null-terminated.

ü rt_errno load_properties(const char *uri, bool append = false) ï loads the properties that are
available in the given uri . If append is false, any pre-existing properties are removed. Otherwise, pre-existing parameters will
remain, but may be overwritten. Appendix E explains the URI syntax as well as provides examples for reading a plain text file or
the Windows registry.

Example Code:

if (FDF::load_properties("etc/my_properties.cfg")) {

 RT_LOG_ERROR("Unable to open properties file");

 exit(3);

}

char buff[FDF::MAX_PROPERTY_SIZE];

RT_Field fld;

fld.ptr = buff;

fld.size = (int)FDF::get_property("MY_PROPERTY_NAME", buff);

cout << "MY_PROPERTY_NAME as string = " << buff << endl;

cout << "MY_PROPERTY_NAME as string = " << fld.to_string() < < endl;

cout << "MY_PROPERTY_NAME as integer = " << fld.to_int() << endl;

Sgd `anud dw`lokd bncd kn`cr ` oqnodqsx ehkd+ ®dsb.lx^oqnodqshdr-bef¯+ `mc qdsqhdudr sgd oqnodqsx+ ®LX^OQNODQSX^M@LD¯-
Properties are written to the destination argument as a null-terminated string. If integers or double types are needed, applications
can use the RT_Field class as shown above.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

72

Chapter 5 Permission Service

FactSet has a permission system used to entitle its terminal users for real time or delayed exchange data for display-only-use, this
system has been extended to enforce permissioning via third party integrators. By providing user permission maps, login status and
an IP address check, sgd sghqc o`qsx rxrsdl b`m dmenqbd E`bsRdsr sdqlhm`k odqlhrrhnmr hm sgdhqown system. This is called the
Workstation Entitled API permission setup.

× Clients who subscribe to the Enterprise DataFeed and manage their own permissions and exchange re-
distribution agreements do not need to use the Permission Service.

5.1 Requirements

To use the Workstation Entitled API permission scheme, every user needs to have a unique FactSet Serial Number, either linked to a
E`bsRds Vnqjrs`shnm nq sn ` E`bsRds K`tmbg `bbntms- E`bsRds l`hms`hmr sgd hmchuhct`k trdqr dwbg`mfd odqlhrrhnmr nm sgdhq rdrial
number. Exchange access through the third party terminal will be granted based on Serial Number access.

Every subscription to streaming data provided by FactSet contains a permission code. The third party system must match the
permission code with the permission code contained in the user map of the user requesting the data. If there is a match, data can be
passed on to that user. If there is no match, then the user is not entitled for the data and an error message should be displayed

In order for FactSet to comply with its exchange commitments, the third party must follow the instructions of the FactSet permission
system. FactSet will audit any third party implementation to ensure its permissions are being enforced correctly.

The Permission service encapsulates all of the FactSet permission logic in to a simple ALLOW/DENY notification. Third parties must
subscribe, listen, and follow all the permission statuses relayed by the permission service. The permission service generates data for
each individual Factset user. So, the third party system must request and continue to listen to the permission service using the
FactSet USERNAME-SERIAL combination. For example, XYZCOMPANY-12345 is passed to the permission service. Any changes will be
sent via the service. In addition, the third party must provide an IP address or list of IP addresses. These two sets of information will
be all FactSet needs to make a judgment on whether a user has access to data or is denied.

As a response, the permission service will provide two sets of information. One is the login status, represented by a 1 or 0. When the
status is 1, the third party is allowed to send FactSet exchange data to its third party terminals. When the status is 0, no FactSet
exchange data may be sent. The second is the permission map which is only available if the user is logged on. The third party must
l`sbg sgd rsqd`lhmf c`s` sn sgd trdqr odqlhrrhnm rds sn `bbtq`sdkxpermission the individual user.

× As mentioned above, the permission service is designed to provide streaming updates on the status of individual
users. It is not necessary nor desirable to rapidly make new requests to this service in an attempt to discover changes
because they will be streamed to the subscriber automatically.

Nmkx nmd rtarbqhoshnm hr `kknvdc enq ` o`qshbtk`q trdq+ he sgd trdq `ssdlosr rn `tsgdmshb`sd nm ` rdbnmc l`bghmd ` ®Ctokhb`sd
rtarbqhoshnm Dqqnq¯ vhkk ad rdms sn sgd ehqrs qdptdrs- Sghr hr ax cdrhfm sn rhfm`k sg`s ` trdq hr `kqd`cx knffdc nm eqnl ` chfferent
terminal. The correct behavior will be to allow the new login request and invalidate the original connection.

× FactSet provide utilities for firms that may want to check on the status of an individual user using the permission
service. Because of the duplication subscription behavior, this wil shut down the induvidual in favor of the utility, which
may not be the desired result.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

73

5.1.1 Authenticating with a FactSet Workstation

The user can only receive data while being logged into the FactSet workstation on the same machine as where the third party
terminal software is running, this will be confirmed by an IP address check and logon status check.

If the third party terminal tried to run with the user not being logged in to FactSet, or logged in on a different machine, the third
party terminal would fail the login test and would not receive any data.

5.1.2 Authenticating with FactSet Launch

FactSet Launch is a web portal where multiple FactSet services can be accessed through a single sign-nm+ sgd trdqr tmhptd `mc
permanent factset.net ID is used to login. The factset.net ID is linked to a FactSet Username and Serial Number with individual access
to datasets and applications.

The Launch utility Activate my Terminal is available in the tools menu in FactSet Launch. The utility is collecting the local IP address
from the machine where it is run to be used by the permission service. Activate my terminal is recommended to use through
Chrome.

The user needs to authenticate through FactSet Launch on the same machine as the third party terminal is being used. This will be
confirmed by an IP address check. Once authenticated access with be granted for 12 hours. After 12 hours the user needs to renew its
access from launch.factset.com.

If the third party terminal is run without the user being authenticated through Launch in the last 12 hours, or authenticated on a
different machine, the third party terminal fails the login test and will not receive any streaming data.

5.2 Workflow

An overview of the technology and workflow for this service is described below.

https://launch.factset.com/

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

74

¶ Step 1: FactSet has a centralized system that manages all its
end users’ permissions, login status and Launch/Workstation
IP address. A user logs into the FactSet terminal/Launch and
the Permission Server is notified.

¶ Step 2: This system informs the DataFeed of the users’
current state of permissions, login status and
Launch/Workstation IP address.

¶ Step 3: The DataFeed server will check the list of IP
addresses sent to the API and if the Launch/Workstation IP is
in the list, The DataFeed Server will also ensure the user is
currently logged on, and pass information that the
requirements were met. The Third Party system then has all
the information it needs to permission their terminals.

¶ Step 4: If the user is not authenticated/logged into FactSet or
the IP addresses do not match, then the third party system is
not allowed to send exchange data to the third party terminal.
If the user is authenticated/logged in and the IP addresses do
match, then a second layer of permissioning takes place. The
exchange data needs to be matched up with the permission
map of the user by the third party server. If the end user has
the proper permissions, then the exchange data can be
displayed in the third party terminal, which runs on the same machine as the FactSet terminal.

He sgd dmc trdqr odqlhrrhnm l`o cndr mns bnms`hm sgd mddcdc dmshskdldms+ ` ldrr`fd vhkk ad rdmt saying the user is not entitled and
no exchange data will be sent to the terminal.

Example:

1. User requests FDS-USA

2. An FDS-USA trade message containing permission code 12345 is returned by the DataFeed server

3. Third party confirms that user has 12345 in their permission map

4. Third party allows FDS-USA to be seen by user

Continuation of example:

5. The users’s permission to 12345 is removed

6. FactSet provides notification of user’s change in permission code to third party server

7. Third party server denies user access to FDS-USA

The login information, permission maps and IP address checks are dynamic. If there is any change, the third party server will be
notified and the new logic should be applied.

5.3 Audit Process

FactSet has a number of tests designed to ensure sgd sghqc o`qsx hmsdfq`snq hr oqnodqkx dmenqbhmf E`bsRdsr odqlhrrhnmr- Sgdrd `qd
contained in a separate document available upon request from FactSet. FactSet will need to perform an audit at the third parsxr
office to ensure compliance.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

75

5.4 Service and Data Model

The permission service name is FDS_PERM. The request keys to this service should be of the form USERNAME-SERIAL NUMBER
(e.g., FDS-12345).

The permission request will return a response with 2 fields. FID 9221 (USER_LOGIN_STATUS), will return a 1 or 0. 1 signifies the
client is logged in currently/authenticated and the IP addresses match. 0 signifies that the user is logged off/not authenticated or the
IP addresses do not match.

For FID 9222 (USER_PERMISSIONS), there will be a comma delimited list of permission codes for the user. When a field exceeds 255
characters, the same 9222 fid is repeated with the new continuation of the permission code list. This continues until the list is
complete.

The IP addresses need to be comma separated and sent through the method:

RT_Request& set_options (const char *options)

. . .

// create a permission service RT_Request for service=FDS_PERM,symbol=USER - SERIAL

RT_Request req("FDS_PERM", "USER - SERIAL");

// attach comma seperated list of IP addresses
req.set_options(ñ1.2.3.4,192.168.0.1ò);

FDF::request(req, on_message, NULL, &tag);

. . .

5.4.1. Complete Permission Service Example

#include <string>

#include <iostream>

#include <map>

#include <vector>

#include <winsock2.h>

#include <ws2tcpip.h>

#include "FDS/rt_api.h"

#include "FDS/rt_fields.h"

// link with Ws2_32.lib, which will be used to get the IP address of the local machine

#pragma comment (lib, "Ws2_32.lib")

using namespace std ;

using namespace FDS;

const char * connection_str = "client:secret@api.df.factset.com" ;

const char * target_user_id = "user - id" ;

// Callback function for user permissions

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

76

void on_user_permissions (int tag , const RT_Message * msg, const RT_Record * rec , void

* closure)

{

 if (msg- >is_error ())

 {

 // Most likely unknown user

 cout << "Error: " << msg- >get_error_description () << endl ;

 FDF:: cancel (tag);

 return ;

 }

 if (msg- >is_closed ())

 {

 // User has been deactivated or FactSet detected that user

 // has logged on from a different location.

 //

 // Treat this as user has logged off. Subscribe again with

 // updated IP address if necessary.

 cout << "Error: " << msg- >get_error_description () << endl ;

 FDF:: cancel (tag);

 return ;

 }

 const RT_Field login_status = msg- >get (FIDS :: USER_LOGIN_STATUS);

 if (login_status . empty ())

 {

 cout << "No FIDS::USER_LOGIN_STATUS field in the permission message: \ n " << msg

<< endl ;

 return ;

 }

 if (login_status . to_int () == 1)

 {

 // User is logged in, get comma separated list of user permissions.

 // May be more than one USER_PERMISSIONS field, so collect them all

 cout << "User is logged in, try to get user permissions" << endl ;

 // Iterate all the fields in the message for the permission codes

 string perm_codes ;

 RT_Message:: const_iterator itr ;

 for (itr =msg- >begin (); itr != msg- >end (); itr ++)

 {

 if (itr - >fid == FIDS :: USER_PERMISSIONS)

 {

 perm_codes . append (itr - >data . ptr , itr - >data . size);

 perm_codes . append (",");

 }

 }

 // Remove the comma from the end of the string

 if (! perm_co des . empty ())

 perm_codes . erase (perm_codes . end () - 1);

 cout << "Permission codes: " << perm_codes << endl ;

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

77

 } else

 {

 // User is logged off or IP addresses don't match. Deny access

 // to FactSet data.

 //

 // Cancel sub if no longer interested OR leave sub open and this

 // callback will be called if login status changes.

 cout << "User is not logged in or IP address doesn't match" << endl ;

 FDF:: cancel (tag);

 }

}

// return string of comma separated IP addresses of user's PC

void FetchUsersIPAddresses (vector <string >& ip_addresses)

{

 struct addrinfo * result = NULL;

 struct addrinfo * ptr = NULL;

 struct sockaddr_in * sockaddr_ipv4 ;

 // Initialize Winsock

 WSADATA wsa_data ;

 int ret = WSAStartup (MAKEWORD(2, 2), &wsa_data);

 if (ret != 0)

 {

 cout << "WSAStartup failed: " << ret << endl ;

 return ;

 }

 // Get host name

 char hostName [128] = { 0};

 gethostname (hostName , sizeof (hostName));

 // Get all the IP address in this machine

 ret = getaddrinfo (hostName , NULL, NULL, &result);

 if (ret != 0)

 {

 cout << "getaddrinfo failed with error: " << ret << endl ;

 WSACleanup();

 return ;

 }

 for (ptr =result ; ptr != NULL; ptr =ptr - >ai_next)

 {

 switch (ptr - >ai_family)

 {

 case AF_UNSPEC:

 cout << "Unspecified" << endl ;

 break ;

 case AF_INET :

 sockaddr_ipv4 = (struct sockaddr_in *) ptr - >ai_addr ;

 ip_addresses . push_back (inet_ntoa (sockaddr_ipv4 - >sin_addr));

 break ;

 case AF_INET6 :

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

78

 // If the IP address is IPV6, process here.

 break ;

 }

 }

}

int main (int argc , char ** argv)

{

 // Connect to FactSet Data Source

 FDF:: set_connection_info (connection_str);

 const rt_errno err = FDF:: connect ();

 if (err)

 {

 cout << "Connection error: " << err << endl ;

 return (int) err ;

 }

 // Request user permissions

 RT_Request req ("FDS_PERM", target_user_id , false);

 //Get the user's IP address and populate into the request

 vector <string > ip_addr ;

 FetchUsersIPAddresses (ip_addr);

 string finalResult ;

 if (ip_addr . empty ()){

 // Separate each IP address with comma

 finalResult = ip_addr [0];

 for (int i =1; i < ip_addr . size (); i ++)

 finalResult = finalResult + "," + ip_addr [i];

 }

 cout << "IP address: " << finalResult << endl ;

 req . set_options (finalResult . c_str ());

 int tag ;

 FDF:: request (req , on_user_permissions , NULL, &tag);

 // Dispatch loop

 while (true)

 FDF:: dispatch (- 1);

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

79

Chapter 6 Options Greeks Calculation

FactSet provides additional fields that return Greeks values and Implied Volatilities for Streaming DataFeed users.

6.1 Requirements

The Options Greeks Calculations require Version 2.2 of the Exchange DataFeed C++ Toolkit. Any applications that plan to use version
2.2 of the latest toolkit will need to recompile. Any applications that want to use this new functionality will require a code change and
to recompile.

6.2 New Implied Volatility and Greek Fields19

Field Id Name Type Description

2613 ANALYTIC_PRICE_RULE Integer This is a flag to tell which price is being used in the analytic
calculations. A value of 1 means that Mid price is used. A value of 2
means that during market hours a Mid price will be used and after
market hours the settlement price will be used.

2614 EXPIRATION_DAYS_TO Integer The number of business days until the option expires

2620 DELTA Decimal The rate of change of option value with respect to changes in the
underlying asset's price.

2621 GAMMA Decimal The rate of change in the delta with respect to the changes in the
underlying asset’s price

2622 VEGA Decimal The sensitivity of the value of the option to the volatility of the
underlying asset

2623 THETA Decimal The sensitivity of the value of the option to the passage of time

2624 RHO Decimal The sensitivity of the value of the option to the risk free interest rate

2630 IMP_VOL Decimal The volatility of the price of the underlying security that is implied by
the market price of the option based on an option pricing model

2631 IMP_VOL_ASK Decimal The volatility of the price of the underlying security that is implied by
the market ask price of the option based on an option pricing model

2632 IMP_VOL_BID Decimal The volatility of the price of the underlying security that is implied by
the market bid price of the option based on an option pricing model

2633 IMP_VOL_CALC_RATE Decimal The calculated value of the interest rate using the option pricing
model

2634 THEO_VALUE Decimal The calculated value of the option using the option pricing model

Please note that all fields except ANALYTIC_PRICE_RULE and EXPIRATION_DAYS_TO will be blank in the in the initial snapshot
message. The values will begin streaming shortly after. The values will be recalculated based on any changes in the underlying asset
or the option. The values will be sent at a maximum of once every 10 seconds.

19 For detailed information on how these fields are calculated please see FactSet Online Assistant Page 14933

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

80

6.2.1 Sample Data

 response key: IBM#A1814C195000 - USA, tag: 1, msg:

 T:1 K:IBM#A1814C195000 - USA E:0 Flags:AGB

 NumFids = 11 Size = 151

 MSG_TYPE[1] Val = U Size=1

 DELTA[2620] Val = 0.553972 Size=8

 GAMMA[2621] Val = 0.007738 Size=8

 VEGA[2622] Val = 0.901767 Size=8

 THETA[2623] Val = - 0.020611 Size=9

 RHO[2624] Val = 1.200264 Size=8

 IMPL_VOL[2630] Val = 22.392416 Size=9

 IMPL_VOL_ASK[26 31] Val = 22.697414 Size=9

 IMPL_VOL_BID[2632] Val = 22.087504 Size=9

 IMPL_VOL_CALC_RATE[2633] Val = 22.392416 Size=9

 THEO_VALUE[2634] Val = 20.424996 Size=9

6.3 Risk Free Interest Rates

FactSet uses Sovereign Debt Benchmarks for Risk Free Interest Rates. The country will be determined based on the currency of the
option and the period of time will be determined based on the expiration date of the option.

6.4 Setting up Greek Calculations

There are two steps required to turn on the Greek calculations:

1. Include new header for Greeks Calculations.

#include "FDS/ OptGreeksFeature.h "

2. Enable Greek Calculation after the connection is made before the option request is sent

FDF::enable(OptGreeksFeature());

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

81

6.4.1 Processing a Message Example

#include <iostream> // include all system header files

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

#include "FDS/ OptGreeksFeature.h " // include the OptGreeks header file

using namespace std; // for convenience

using namespace FDS; // for convenience

void on_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 // if the server closed the stream close our side as well

 if (msg - >is_closed()) { FDF::cancel(tag); }

 if (msg - >is_error()) {

 cout << "Error: " << msg - >get_error_description() << endl;

 return ;

 }

 string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();

 string delta = msg- >get(FIDS::DELTA).to_string();

 string gamma = msg - >get(FIDS::GAMMA).to_string();

 string vega = msg - >get(FIDS::VEGA).to_string();

 string theta = msg - >get(FIDS::THETA).to_string();

 string rho = msg - >get(FIDS::RHO).to_string();

 cout << "Update: " << msg_type << " Delta: " << delta

 << " Gamma: " << gamma << " Vega: " << vega

 << " Theta: " << theta << " Rho: " << rho << endl;

}

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 FDF::enable (OptGreeksFeature()); // before an options request

 int tag;

 RT_Request req("FDS1", " IBM#A1814C195000 - USA");

 FDF::request(req, on_message, NULL, &tag);

 cout << "made a request for " << req << " tag=" << tag << endl;

 // dispatch messages

 while (true)

 FDF::dispatch(- 1);

}

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

82

Chapter 7 Level 2 Data

FactSet provides market depth in the Exchange DataFeed for Enterprise Streaming DataFeed users. The additional bid and ask
information may be called Level 2, market depth, or order book data, depending on the exchange. In this document market depth is
referred to as Level 2 data.

7.1 Requirements

Level 2 functionality in the C++ toolkit requires version 2.5.1 or higher of the Exchange DataFeed C++ Toolkit. Any applications that
are updated to use version 2.5.1 of the latest toolkit will need to be recompiled. Any applications that are going to use level 2
functionality will require a code change and to recompile.

7.3 Setting up Level 2 Data

There are 2 ways to receive Level 2 data: Raw Data and Sorted Data. For either type, the ticker requested must be appended with
®9K1¯+ sghr vhkk rtarbqhad sn sgd Kdudk 1 eddc enq sgd fhudm shbjdq `mc hr sgd nmkx qdpthqdldms sn rtarbqhad sn q`v Kdudk 1 cata. To
subscribe to NASDAQ TotalView data the ticker should be appended with :TV.

Additional FactSet product permissions are needed to consume these data sets. The raw data request will provide all the bids and
asks for an individual security. The updates will be sent in the order they are received by FactSet. To access prerecorded canned data
for development efforts use the service FDS_C, the available ticker for canned level 2 data is:

SIAC :
FDS
IBM
DIS
JNJ
WMT

NASDAQ :
CSCO
AAPL
INTC
MSFT
AMZN

Sorted Data is identical to raw data, with the exception that every valid Level 2 message contains an additional field indicating the
ldrr`fdr rnqsdc onrhshnm 'AHC^HMCDW^0 `mc @RJ^HMCDW^0(- Sn dm`akd Rnqsdc C`s`+ sgd Kdudk 1 ed`stqd ltrs ad dm`akdc `esdq sgd
connection is made before the Level 2 request is sent.

FDF::enable(Level2F eature());

This feature will allow consumers to create a display that has the bids/ask in price order.

7.2 Level 2 Fields

In addition to the currently supported data fields, the following table described the new fields added for the Level 2 content set.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

83

Field Id Name Type Description

150 BID_INDEX_1 Integer Sorted Data only: The message’s position in a sorted list of bids.

250 ASK_INDEX_1 Integer Sorted Data only: The message’s position in a sorted list of asks.

520 ORDER_CODE String Order Code

521 MM_STAT_BITMASK String Shows Open/Closed quotes20

522 MARKET_MECHANISM_TYPE String Used to show the order type as in market order or limit order

523 MARKET_MAKER_ID String Market Maker ID

Not every exchange will populate every new field that has been added. The new fields will be used with the level 1 fields
BID_1/ASK_1, BID_VOL_1/ASK_VOL_1, and BID_TIME_1/ASK_TIME_1.

7.4 Processing Level 2 Data

There are a few specific rules for Level 2 messages that need to be followed to maintain an accurate record.

¶ If a message has the MSG_TYPE “D”, it represents a delete, and the corresponding entry, by ORDER_CODE, is no longer valid.
These must be processed properly to avoid stale date in the Level 2 record. For the Sorted Data functionality, it will no longer be
considered when sorting the list and should be removed accordingly.

¶ For Sorted Data, each valid message will come with BID_INDEX_1 and/or ASK_INDEX_1 populated. These indicate the message’s
position in the sorted list of bids and ask respectively. To handle these messages properly, the previous corresponding entry in the
list, by ORDER_CODE, should be removed, and this message should be inserted at the position specified in the INDEX field.

7.4.1 Processing a Message Example

The example code below shows one way to process a sorted Level 2 message from a callback. The callback function checks message
type and bid/ask data, at which point any processing of that data can be done. In addition, it checks to see if the stream was closed,
and if so, it closes the client-side stream by canceling the tag.

The server may close the stream at any time. In addition, error messages (like RT_E_NOT_FOUND) will cause the stream to set the
close/end-of-stream indicator. The example callback handles both of these conditions.

#incl ude <iostream> // include all system header files

#include "FDS/rt_api.h" // include the API header files

#include "FDS/rt_fields.h" // include the API fields file

#include "FDS/ Level2 Feature.h " // include the Level2 header file

using namespace std; // for convenience

using namespace FDS; // for convenience

20 Only used in Nasdaq Level 2 feed, this is the only level 2 exchange that does not clear the book at the end of the day, quotes are just closed.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

84

void on_message(int tag, const RT_Message *msg,

 const RT_Record *rec, void *closure)

{

 // if the server closed the stream close our side as well

 if (msg - >is_closed()) { FDF::cancel(tag); }

 if (msg - >is_error()) {

 cout << "Error: " << msg - >get_error_description() << endl;

 return ;

 }

 string msg_type = msg- >get(FIDS::MSG_TYPE).to_string();

 bool has_bid = msg- >exists(FIDS::BID_INDEX_1);

 bool has_ask = msg - >get(FIDS::ASK_INDEX_1);

 if (!msg_type.compare(ñDò)) { // handle delete message }

 else {

 if (has_bid) { // handle bid data }

 if (has_ask) { // handle ask data }

 }

}

int main(int argc, char **argv)

{

 // set up connection (see previous code)

 FDF::enable (Level2Feature ()); // before a Level 2 request

 int tag;

 RT_Request req("FDS1", " FDS- USA:L2 ");

 FDF::request(req, on_message, NULL, &tag);

 cout << "made a request for " << req << " tag=" << tag << endl;

 // dispatch messages

 while (true)

 FDF::dispatch(- 1);

}

See the Level2Quote sample utility included in the C++ toolkit for a more complete example, including logic for maintaining sorted bid
and ask lists.

NOTE:The maximum number of simultaneous level 2 symbols per connection is limited to 100 symbols.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

85

Chapter 8 Utilities

FactSet includes sample utilities with the toolkit located in the sample/API_C++ folder.

8.1 MultiUser

The MultiUser utility is a stand-alone example program using the FactSet DataFeed C++ API which can help demonstrate how to
connect to the DataFeed with multiple users.

The MultiUser project utilizes multiple RT_Consumers and uses all of them to retrieve data, the configuration file,
MultiUserRequests.txt, shows the format of connection strings and tickers requested. It could look something like this:

user1-serial1:password1@api.df.factset.com FDS-USA GOOG-USA

user2-serial2:password2@api.df.factset.com IBM-USA

for which the program would connect to the Datafeed as both user1 and user2, requesting FDS and GOOG for user1 and IBM for
user2.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

86

Appendix A: Error values

The rt_errno Enumeration:

Error Number Code Description

{Any positive number} A system error This is the platform-specific error (via GetLastError() or
errno).

-51 RT_E_UNKNOWN Unknown/Serious error.

-52 RT_E_NO_SERV The service is not available for requests.

-53 RT_E_NOT_FOUND A resource or key was not found.

-54 RT_E_RENAME The stream has been renamed. You should close the
current stream.

-55 RT_E_TIMEDOUT The request for a resource or a key has timed out. You can
retry the operation.

-56 RT_E_EXISTS The resource already exists.

-57 RT_E_LIMIT An application-level threshold has been reached.

-58 RT_E_PROTOCOL There is an error on the byte stream during deserialization.

-59 RT_E_INVAL Either the operation is not supported or an argument is
invalid.

-60 RT_E_RESOURCE A system resource is unavailable.

-61 RT_E_NO_CONN The connection to the data server is disconnected.

-62 RT_E_VERSION There is an incompatibility with the library being used and
the compiled application.

-63 RT_E_SHUTDOWN The application has disconnected the API and is attempting
to dispatch messages.

-64 RT_E_ACCESS Permission denied. The user does not have access.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

87

Appendix B: Return Values

The following table shows the possible return values for API methods that return an rt_errno Enumeration.

Method Name Return Value(s) Reason(s)

RT_Message::
get_error

RT_E_NOT_FOUND

RT_E_ACCESS

RT_E_RENAME

RT_E_TIMEDOUT

RT_E_NOT_FOUND means the key was not
found under the given service.

RT_E_ACCESS means that the Consumer does
not have permissions to see the message.

RT_E_RENAME means that the record has been
renamed.

RT_E_TIMEDOUT means that the request for
the record timed out and can be retried.

RT_Message::
deserialize

RT_E_PROTOCOL

RT_E_INVAL

The byte stream is corrupted.
Invalid argument (pointer is NULL).

RT_Message::serialize RT_E_NO_ERROR This method can never fail.

RT_Message::
append

RT_E_LIMIT The maximum field count of 255 per Message has
been reached.

RT_FieldMap::
append

RT_E_NOT_FOUND The filename could not be opened.

RT_Consumer/FDF::
set_connection_info

RT_E_INVAL The host information is missing.

RT_Consumer/FDF::
connect

RT_E_VERSION

RT_E_INVAL

RT_E_ACCESS

RT_E_PROTOCOL

{System Errno}

RT_E_VERSION will be returned if the incorrect
library was linked at compile time.

RT_E_INVAL is returned if the user did not set
the host and port using set_connection_info().

RT_E_ACCESS the user name or password is
incorrect.

RT_E_PROTOCOL is returned if the connection
is not returning the valid protocol. This may
occur if the application attempts a TCP connect
to some unknown server.

{System Errno} If the API could not resolve the
host name, open the TCP connection, or create
the communication thread a system errno is
returned. It is a positive error number from the
native platform.

RT_Consumer/FDF::
disconnect

RT_E_NO_ERROR This method can never fail.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

88

RT_Consumer/FDF::
request

RT_E_NO_SERV

RT_E_NO_CONN

RT_E_NO_SERV means that the request is
being held until the service is enabled.

RT_E_NO_CONN means that the request is
being held until the connection to the Data
Server is established.

RT_Consumer/FDF::
cancel

RT_E_INVAL The stream tag is invalid.

RT_Consumer/FDF::
get_notify_socket

RT_E_SHUTDOWN The application never issued a call to connect.

RT_Consumer/FDF::
dispatch

RT_E_SHUTDOWN

RT_E_NO_CONN

RT_E_SHUTDOWN means the application never
issued a call to connect, the application
destroyed the RT_Consumer object, or the
application called disconnect().

RT_E_NO_CONN means the connection to the
Data Server has been lost.

RT_Consumer/FDF::
create_mswin_dispatch_window

RT_E_INVAL

RT_E_SHUTDOWN

RT_E_INVAL means that the function is being
called in a UNIX environment.

RT_E_SHUTDOWN means that the application
has not called connect().

RT_Consumer/FDF::
destroy_mswin_
dispatch_window

RT_E_INVAL The function is being called in a UNIX environment.

RT_Consumer/FDF::
lock

RT_E_NO_ERROR This method can never fail.

RT_Consumer/FDF::
unlock

RT_E_NO_ERROR This method can never fail.

FDF::log_open RT_E_ACCESS Unable to open the logfile.

FDF::load_properties RT_E_NOT_FOUND Unable to open properties registry or file

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

89

Appendix C: Control Messages

The following table shows the possible control messages that can be delivered to the application-defined control callback procedure:

Control Type Meaning Additional Information

“DISCONNECTED” The TCP Connection to the data
server is disconnected.

The error information can be obtained via the
get_error() method on the message object.
The error will be one of the error values that
connect() can return.

“CONNECTED” The TCP Connection to the data
server is connected.

The current active service names are in the Message.
The FID, FIDS::SERVICE_NAME, is used repetitively.

“SERVICE_ENABLE” New services are now available
for requests.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

“SERVICE_DISCONNECT” Services have become stale.
Existing streams will now
transition to stale.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

“SERVICE_DISABLE” The services are no longer
accepting any new streams.

The service names are in the Message. The FID,
FIDS::SERVICE_NAME, is used repetitively.

“TERMINATE” The FactSet data server is
requesting the application
terminate its connection (i.e.
the application MUST call
disconnect())

This is typical when the authentication for an
asynchronous connection has failed. Applications
MUST call disconnect when receiving this message.
If they do not, the API will call disconnect on its
behalf.

The control callback procedure has the following prototype:

ü void (*CtrlCB)(bool is_connected, const class RT_Message *msg, void *closure);

The is_connected boolean parameter will always indicate the current status of the TCP connection to the data server.

The control type is a string that can be extracted from the message key (e.g., control_type = msg->get_key()). The enumeration of the
possible control strings are listed in the table above.

Additional data fields may be present based on the type of control message. These fields are located in the RT_Message object.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

90

Appendix D: Connection Strings and URI’s

Connection Strings

Connection strings allow applications to specify host and authentication information as a single string. The syntax is as follows:

[USER][:PASSWD][@]HOST[:PORT]21

The HOST value can be either a host name or dotted decimal (e.g., fdshost, api-stage.df.factset.com or 10.14.1.6). HOST is a
mandatory parameter.

PORT can either be an integer or a service name (e.g., fdsserv or 6681). This is an optional parameter and defaults to 6681 if not
specified.

The USER:PASSWD@ part is optional22. USER is the FactSet-supplied username, PASSWD is the FactSet-supplied password.

Examples:

client :aaa@fdshost ld`mr `tsgdmshb`sd trhmf ` trdqm`ld ne ®client̄ `mc ` o`rrvnqc ne ®```¯ sn sgd rdqudq ®ecrgnrs¯ nm sgd cde`tks
port 6681.

client @10.2.4.5:4063 means connect to the host at 10.2.4.5 on port 4063 with a username set to client.

Bnmmdbshnm TQHr

Bnmmdbshnm TQHr `qd tmhudqr`k qdrntqbd hcdmshshehdqr sg`s `kknv sgd @OH sn qdrnkud ` bnmmdbshnm rsqhmf `mc hsr hmchuhct`k bnmponents.
If a specific protocol is not given, the URI itself is a connection string.

An application may request the API to look for connection information in a file or a Windows registry. In this case, the application
should pass in a valid configuration URI (see Appendix E). If a NULL pointer is passed in as the URI, FDF::get_property() will be used
to resolve the connection information. The following table outlines the property names used for resolution:

Property Name Meaning

RT_CONNECTION Actual Connection string of the form:
[USER][:PASSWD][@]HOST[:PORT]

RT_HOST The hostname of the Data Server format: HOST[:PORT]

RT_USER Username for authentication

RT_PASSWORD Password for authentication

The RT_CONNECTION parameter is queried first followed by RT_HOST, RT_USER, and RT_PASSWORD. If present, the RT_HOST,
RT_USER, and RT_PASSWORD will overide any specific values obtained from the RT_CONNECTION parameter.

21 [] indicate optional
22 Although the user and password information is optional in the connection string, the API must have a user and password in order to authenticate with the FactSet Data
Server.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

91

Appendix E: Configuration Properties

The API supports loading global properties from a file or from the Windows Registry. This can be done using the global method:
FDF:: load_properties(const char *uri, bool append= false);

Loading Properties from the Windows Registry

¶ FDF::load_properties(ñreg:/HKEY_LOCAL_MACHINE/Software/FactSet/FDFò) – opens the registry
hive HKEY_LOCAL_MACHINE. The method will also traverse to the Software/FactSet/FDF section and recursively load all the
name/value pairs.

¶ FDF::load_properties(ñreg:/HKEY_LOCAL_MACHINE|HKEY_CURRENT_USER/Software/FactSet/FDF

ò) – This method performs the same action as the previous example. In addition, after traversing the HKEY_LOCAL_MACHINE
hive, the HKEY_CURRENT_USER hive will be read. Any property names that are duplicated in the HKEY_CURRENT_USER hive will
overwrite the values read in from the HKEY_LOCAL_MACHINE hive.

Example registry hive:

Based on the example above the following properties will be loaded:

Property Name Value

RT_CONNECTION client@api.df.factset.com

RT_HOST api.df.factset.com

RT_INSTALLATION_DIR C:\FactSet\fdsrt-2-0\

RT_PASSWD pswd

RT_USER client

ClientData/Property123 value1

23 If additional subkeys exist within the given registry path (like ClientData in the above example), the property name will include the key followed by a ‘/’. In the above
example all values in the ClientData section will have a property name “ClientData/{name}”.

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

92

Loading Properties from a File

By default, the uri string without a specific protocol is a file. Some examples:

¶ FDF::load_properties(ñetc/my_config.txtò) – opens “my_config.txt” using the relative path “etc/”.

¶ FDF::load_properties(ñfile:etc/my_config.txtò) – same as the previous example

An example configuration file:

//

// C++ style comments are used

//

RT_CONNECTION = " client@fdshost :6690";

FIELD_MAP_FILE = "etc/rt_fields.xml";

BASEDIR = "db/";

SYMBOL_FILE = "etc/USE_tickers.txt";

ClientData::Property1 = " value1 "

Each name/value pair must end in a semi-colon. The syntax is described as follows:

{parameter_ name} = ñvalue in quotationsò;

Syntax rules:

¶ Anything between the ‘//’ character sequence and the new-line character is a comment.

¶ Parameter names must be a single word (whitespace is not permitted).

¶ Parameter names and values must be separated by the ‘=’ character.

¶ All parameter values must be in quotations, and end with a ‘;’ character.

¶ Any amount of whitespace is permitted on either side of the ‘=’ delimiter.

¶ Values must be in quotations and should not contain the new line character.

Based on the example above the following properties will be loaded:

Property Name Value

RT_CONNECTION client@fdshost:6690

FIELD_MAP_FILE etc/rt_fields.xml

BASEDIR db/

SYMBOL_FILE etc/USE_tickers.txt

ClientData::Property1 value1

Copyright © 2017 FactSet Research Systems Inc. All rights reserved. FactSet Research Systems Inc. | www.factset.com

93

Appendix F: Document Version History

The following are revisions made since the Version 1.1 revision H

-
Revisions Sections

Added overview of workstation data source, expanding
diagram

1.1

Workstation install requirement 2.3.1

Description of the new workstation connect function 3.2

Eliminated the RT_Response and RT_FidResponse classes
and replaced them with one unified RT_Message class

4 All sections we re-arranged to reflect this change.

The following are revisions made since the Version 2.1 revision C

-
Revisions Sections

Added language to specify workstation_connect() and
FactSet workstation need to be run using the same user.

3.2

Added Chapter on Permissioning Service 5.1 – 5.4

Updated Supported Versions of Visual Studio 2.1.1 - 2.1.2

Removed Support for Sun 2.1.1 – 2.1.2, 2.3.3

Added Required Ports 6681 and 443 1.4.2

Removed Support for Linux 3.2 2.1.1

Added Chapter on Greek Options Calculations 6.1 – 6.4

Added information on IP/Port mappings 1.4.2

Added information on Permission Service 5

Added Chapter on Level 2 functionality 7

The following are revisions made since the Version 2.5 revision A

Revisions Sections

Added section on Bulk Subscriptions 3.3

Added information about OTP 3.2.1

The following are revisions made since the Version 3.0 revision A

Revisions Sections

Added new error code 4.1.1, Appendix A, Appendix B

